Mu gem2ts DNA integration is not necessary for induction of synchrony of cell division in Escherichia coli K12. 1997

P Bobrowicz, and L Paolozzi, and P Ghelardini
Dipartimento di Biologia, Università di Roma Tor Vergata, Italy.

The gem2ts mutant of bacteriophage Mu induced synchrony of cell division on bacteria surviving infection. Induction of synchronous growth could also be observed as a response to the entire infected bacterial population, as in the case of infection of hic mutants, a peculiar class of gyrB alleles. After Mu wild-type or Mu gem2ts infection of hic mutants, there was a lack of viral DNA integration and replication, while phage gene expression (including that of A gene, coding for the transposase) seemed to be quite normal. These data indicate that the mechanism of bacterial synchronization induced by Mu gem2ts does not require integration nor replication of the phage DNA.

UI MeSH Term Description Entries
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D010583 Bacteriophage mu A temperate coliphage, in the genus Mu-like viruses, family MYOVIRIDAE, composed of a linear, double-stranded molecule of DNA, which is able to insert itself randomly at any point on the host chromosome. It frequently causes a mutation by interrupting the continuity of the bacterial OPERON at the site of insertion. Coliphage mu,Enterobacteria phage Mu,Phage mu,mu Phage,mu Phages
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

P Bobrowicz, and L Paolozzi, and P Ghelardini
March 1976, Archives of microbiology,
P Bobrowicz, and L Paolozzi, and P Ghelardini
July 1989, Molecular & general genetics : MGG,
P Bobrowicz, and L Paolozzi, and P Ghelardini
January 1984, Molecular & general genetics : MGG,
P Bobrowicz, and L Paolozzi, and P Ghelardini
January 1964, Biochemical and biophysical research communications,
P Bobrowicz, and L Paolozzi, and P Ghelardini
January 1989, Journal of bacteriology,
P Bobrowicz, and L Paolozzi, and P Ghelardini
November 1962, Biochimica et biophysica acta,
P Bobrowicz, and L Paolozzi, and P Ghelardini
February 1965, Journal of bacteriology,
P Bobrowicz, and L Paolozzi, and P Ghelardini
September 1974, Annales de microbiologie,
P Bobrowicz, and L Paolozzi, and P Ghelardini
September 1977, Molecular & general genetics : MGG,
Copied contents to your clipboard!