| D008765 |
Methylmalonyl-CoA Mutase |
An enzyme that catalyzes the conversion of methylmalonyl-CoA to succinyl-CoA by transfer of the carbonyl group. It requires a cobamide coenzyme. A block in this enzymatic conversion leads to the metabolic disease, methylmalonic aciduria. EC 5.4.99.2. |
Methylmalonyl-CoA Isomerase,Isomerase, Methylmalonyl-CoA,Methylmalonyl CoA Isomerase,Methylmalonyl CoA Mutase,Mutase, Methylmalonyl-CoA |
|
| D011424 |
Propionibacterium |
A genus of gram-positive, rod-shaped bacteria whose cells occur singly, in pairs or short chains, in V or Y configurations, or in clumps resembling letters of the Chinese alphabet. Its organisms are found in cheese and dairy products as well as on human skin and can occasionally cause soft tissue infections. |
|
|
| D011487 |
Protein Conformation |
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). |
Conformation, Protein,Conformations, Protein,Protein Conformations |
|
| D011994 |
Recombinant Proteins |
Proteins prepared by recombinant DNA technology. |
Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D016297 |
Mutagenesis, Site-Directed |
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. |
Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses |
|
| D020134 |
Catalytic Domain |
The region of an enzyme that interacts with its substrate to cause the enzymatic reaction. |
Active Site,Catalytic Core,Catalytic Region,Catalytic Site,Catalytic Subunit,Reactive Site,Active Sites,Catalytic Cores,Catalytic Domains,Catalytic Regions,Catalytic Sites,Catalytic Subunits,Core, Catalytic,Cores, Catalytic,Domain, Catalytic,Domains, Catalytic,Reactive Sites,Region, Catalytic,Regions, Catalytic,Site, Active,Site, Catalytic,Site, Reactive,Sites, Active,Sites, Catalytic,Sites, Reactive,Subunit, Catalytic,Subunits, Catalytic |
|