Auditory cortical projections to the cat inferior colliculus. 1998

J A Winer, and D T Larue, and J J Diehl, and B J Hefti
Department of Molecular and Cell Biology, University of California at Berkeley 94720-3200, USA. jawiner@socrates.berkeley.edu

The projection from 11 auditory cortical areas onto the subdivisions of the inferior colliculus was studied in adult cats by using two different anterograde tracers to label cortico-collicular (CC) axon terminals. The main results were that: 1) a significant CC projection arose from every field; 2) the principal inferior collicular targets were the dorsal cortex, lateral nucleus, caudal cortex, and intercollicular tegmentum, with only a sparse projection to the central nucleus; 3) the input was usually bilateral, with the ipsilateral side by far the most heavily labeled, and the contralateral projection was a symmetrical subset of the ipsilateral input; 4) the CC system is both divergent and convergent, with single cortical areas projecting to six or more collicular subdivisions, and each auditory midbrain subdivision receiving a convergent projection from two to ten cortical areas; 5) cortical areas devoid of tonotopic organization have topographic projections to collicular target nuclei; 6) the heaviest CC projection terminated in the caudal half of the inferior colliculus; and finally, 7) the relative strength of the cortico-collicular labeling was far less than that of the corresponding corticothalamic projection in the same experiments. The CC system is strategically placed to influence both descending and ascending pathways arising in the inferior colliculus. Nuclei that participate in the premotor system, like the inferior collicular subdivisions that project to the pons, receive substantial corticofugal input. Both the dorsal (pericentral) and the lateral (external) nuclei of the inferior colliculus project to parts of the medial geniculate body whose closest auditory affiliations are with non-tonotopic cortical regions involved in higher order auditory perception. The cortico-collicular system may link brainstem and colliculo-thalamic circuits to coordinate premotor and perceptual aspects of hearing.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

J A Winer, and D T Larue, and J J Diehl, and B J Hefti
May 1976, Experimental neurology,
J A Winer, and D T Larue, and J J Diehl, and B J Hefti
February 1973, Brain research,
J A Winer, and D T Larue, and J J Diehl, and B J Hefti
June 1969, The Journal of comparative neurology,
J A Winer, and D T Larue, and J J Diehl, and B J Hefti
January 2014, Frontiers in neuroanatomy,
J A Winer, and D T Larue, and J J Diehl, and B J Hefti
February 2007, Cerebral cortex (New York, N.Y. : 1991),
J A Winer, and D T Larue, and J J Diehl, and B J Hefti
October 2000, Brain research,
J A Winer, and D T Larue, and J J Diehl, and B J Hefti
December 1972, Archives d'anatomie pathologique,
J A Winer, and D T Larue, and J J Diehl, and B J Hefti
March 1988, The Journal of comparative neurology,
J A Winer, and D T Larue, and J J Diehl, and B J Hefti
February 1979, The Journal of comparative neurology,
J A Winer, and D T Larue, and J J Diehl, and B J Hefti
March 2009, Neuroscience,
Copied contents to your clipboard!