Effect of diuretics on sodium and chloride permeability in the rat papillary collecting duct. 1998

C Ray, and S Carney, and A Gillies
Discipline of Medicine, Faculty of Medicine and Health Sciences, University of Newcastle, N.S.W., Australia.

While in vivo data suggests that diuretics such as furosemide and hydrochlorothiazide alter inner medulla collecting duct (IMCD) cell electrolyte transport, this has not been confirmed by in vivo studies nor have the mechanisms been evaluated. This study evaluated the direct effect of these diuretics as well as amiloride on sodium and chloride unidirectional permeability in the isolated perfused rat IMCD. In the absence of diuretics, the permeability of sodium was lower than that of chloride (0.63 +/- 0.05 compared with 0.83 +/- 0.08 micrometer/s), although both were relatively impermeable when compared to water. Furosemide (10(-4)) and hydrochlorothiazide (10(-3)) both increased the diffusional permeability of chloride by approximately 30% (0.80 +/- 0.06 to 1.04 +/- 0.09 micrometer/s, p < 0.01, and 0.74 +/- 0.09 to 0.98 +/- 0.10 micrometer/s, p < 0.02, respectively). However, sodium permeability was unaltered. Inhibition of Na+, K+-ATPase by ouabain or cooling (4 degrees C) inhibited basal sodium but not chloride permeability while a maximal antidiuretic AVP concentration did not alter sodium or chloride permeability. However, increasing the lumen and bath sodium chloride concentration from 150 to 300 and 600 mM significantly increased both sodium and particularly chloride conductance. In contrast, amiloride (10(-4)) significantly reduced both sodium and chloride permeability. These studies support a direct effect of furosemide and hydrochlorothiazide on the IMCD and suggest that their in vivo effect is primarily mediated by facilitating the passive movement of chloride into the lumen via a favourable electrochemical gradient. These results also demonstrate that amiloride inhibits both sodium and chloride unidirectional permeability by mechanisms separate to that of the sulphonamide-related diuretics.

UI MeSH Term Description Entries
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008297 Male Males
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004232 Diuretics Agents that promote the excretion of urine through their effects on kidney function. Diuretic,Diuretic Effect,Diuretic Effects,Effect, Diuretic,Effects, Diuretic
D005260 Female Females
D005665 Furosemide A benzoic-sulfonamide-furan. It is a diuretic with fast onset and short duration that is used for EDEMA and chronic RENAL INSUFFICIENCY. Frusemide,Fursemide,Errolon,Frusemid,Furanthril,Furantral,Furosemide Monohydrochloride,Furosemide Monosodium Salt,Fusid,Lasix
D006852 Hydrochlorothiazide A thiazide diuretic often considered the prototypical member of this class. It reduces the reabsorption of electrolytes from the renal tubules. This results in increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It is used in the treatment of several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism. Dichlothiazide,Dihydrochlorothiazide,Esidrex,Esidrix,HCTZ,HydroDIURIL,Hypothiazide,Oretic,Sectrazide
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret

Related Publications

C Ray, and S Carney, and A Gillies
September 1978, The American journal of physiology,
C Ray, and S Carney, and A Gillies
September 1985, Japanese circulation journal,
C Ray, and S Carney, and A Gillies
October 1987, The American journal of physiology,
C Ray, and S Carney, and A Gillies
September 1986, The American journal of physiology,
C Ray, and S Carney, and A Gillies
January 1977, Clinical and experimental pharmacology & physiology,
C Ray, and S Carney, and A Gillies
April 1988, The American journal of physiology,
C Ray, and S Carney, and A Gillies
June 1980, The American journal of physiology,
C Ray, and S Carney, and A Gillies
January 1988, Mineral and electrolyte metabolism,
C Ray, and S Carney, and A Gillies
February 1978, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!