The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. 1998

A E Fray, and P G Ince, and S J Banner, and I D Milton, and P A Usher, and M R Cookson, and P J Shaw
Department of Neurology, University of Newcastle upon Tyne, UK.

Emerging evidence suggests that a disturbance of the glutamate neurotransmitter system may be a contributory factor to motor neuron injury in motor neuron disease. Previous autoradiographic and immunoblotting studies have suggested that there may be reduced expression of glutamate transporter proteins in pathologically affected areas of the CNS in motor neuron disease. This study further explores the possible alteration in expression of the excitatory amino acid transporter protein EAAT2 in MND, by examining the protein expression in situ, in frozen sections, using immunohistochemistry. The aim of the study was to compare the distribution and density of EAAT2 in the motor cortex and spinal cord of MND cases (n = 16) compared with neurologically normal controls (n = 12), matched for relevant parameters. A novel, previously characterized, monoclonal antibody to EAAT2 was employed. EAAT2 immunoreactivity in motor neuron disease and control cases was compared using relative optical density measurements generated by computerized image analysis. In the motor cortex, EAAT2 immunoreactivity was laminated comprising a superficial intense band (corresponding to layers 1 and 2); a paler middle band (layer 3 and part of 5) and a more intense deep layer (layers 5 and 6). In the spinal cord, the ventral horn showed strong immunoreactivity with dense perisomatic staining around motor neuron cell bodies, the substantia gelatinosa showed moderate diffuse staining and the intermediate spinal laminae showed weak staining. This general pattern of immunoreactivity was preserved in the motor neuron disease cases. However, in the motor neuron disease cases compared with controls, the optical density values for EAAT2 immunoreactivity were significantly reduced in all grey matter regions of the lumbar spinal cord (P < 0.001) and were increased in the middle laminae of the motor cortex (P < 0.05). This study indicates that glutamate transporter pathology in motor neuron disease may be a more complex phenomenon than previously recognized.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008161 Lumbosacral Region Region of the back including the LUMBAR VERTEBRAE, SACRUM, and nearby structures. Lumbar Region,Lumbar Regions,Lumbosacral Regions,Region, Lumbar,Region, Lumbosacral,Regions, Lumbar,Regions, Lumbosacral
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D003720 Densitometry The measurement of the density of a material by measuring the amount of light or radiation passing through (or absorbed by) the material. Densitometries
D005260 Female Females
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D005911 Gliosis The production of a dense fibrous network of neuroglia; includes astrocytosis, which is a proliferation of astrocytes in the area of a degenerative lesion. Astrocytosis,Astrogliosis,Glial Scar,Astrocytoses,Glial Scars,Scar, Glial

Related Publications

A E Fray, and P G Ince, and S J Banner, and I D Milton, and P A Usher, and M R Cookson, and P J Shaw
November 2011, Glia,
A E Fray, and P G Ince, and S J Banner, and I D Milton, and P A Usher, and M R Cookson, and P J Shaw
January 2007, The Journal of biological chemistry,
A E Fray, and P G Ince, and S J Banner, and I D Milton, and P A Usher, and M R Cookson, and P J Shaw
January 2009, American journal of physiology. Gastrointestinal and liver physiology,
A E Fray, and P G Ince, and S J Banner, and I D Milton, and P A Usher, and M R Cookson, and P J Shaw
August 2013, Neuroscience,
A E Fray, and P G Ince, and S J Banner, and I D Milton, and P A Usher, and M R Cookson, and P J Shaw
August 2012, Neurobiology of disease,
A E Fray, and P G Ince, and S J Banner, and I D Milton, and P A Usher, and M R Cookson, and P J Shaw
March 2015, The Journal of experimental medicine,
A E Fray, and P G Ince, and S J Banner, and I D Milton, and P A Usher, and M R Cookson, and P J Shaw
December 2005, Neurochemistry international,
A E Fray, and P G Ince, and S J Banner, and I D Milton, and P A Usher, and M R Cookson, and P J Shaw
April 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A E Fray, and P G Ince, and S J Banner, and I D Milton, and P A Usher, and M R Cookson, and P J Shaw
May 2007, Glia,
Copied contents to your clipboard!