Functional immaturity of rat alveolar macrophages during postnatal development. 1998

J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
Department of Cell Biology and Immunology, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands.

Alveolar macrophages (AM) are important in the regulation of immune responses in the lung, through their role as scavenger cells and through the production of many bioactive factors. Because in early infancy pulmonary infections are a recurrent problem, we studied the postnatal functional maturation of AM in a rat model. AM were isolated from rat lungs by bronchoalveolar lavage at several time intervals after birth and tested for their ability to ingest Escherichia coli in the presence of surfactant protein A (SP-A). Furthermore, their capacity to produce nitric oxide (NO) and interleukin-1 beta (IL-1 beta) after in vitro lipopolysaccharide (LPS) stimulation was analysed, as well as their capacity to downregulate proliferation of T cells from both mature and neonatal rats. SP-A-mediated phagocytosis of E. coli by AM was reduced in 14-day-old neonatal rats, as compared with mature rats (P < or = 0.05). Also the IL-1 beta production by rat AM after LPS stimulation was impaired at 14 days of age, as compared with IL-1 beta production by AM from mature rats (P < or = 0.05). In contrast, the LPS-induced NO production by rat AM as well as the capacity to inhibit T-cell proliferation were well developed at all ages tested. In conclusion, during postnatal development the rat AM is functionally immature, with respect to phagocytosis and secretion of inflammatory mediators. These differences may underly the enhanced susceptibility to pulmonary infections as found in human neonates.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
August 1987, The American review of respiratory disease,
J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
January 1980, Folia biologica,
J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
January 1996, Neuroscience,
J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
December 1983, The Journal of Osaka University Dental School,
J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
October 1984, Infection and immunity,
J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
January 1988, Acta anatomica,
J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
July 2020, Anatomia, histologia, embryologia,
J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
December 1991, The American journal of physiology,
J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
February 1994, Journal of leukocyte biology,
J M Bakker, and E Broug-Holub, and H Kroes, and E P van Rees, and G Kraal, and J F van Iwaarden
February 2013, Journal of molecular histology,
Copied contents to your clipboard!