Localization of the ROMK potassium channel to the apical membrane of distal nephron in rat kidney. 1998

Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
Department of Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8856, USA.

BACKGROUND The apical potassium (K+) channels mediate K+ recycling in thick ascending limb (TAL) and K+ secretion in cortical collecting duct (CCD). Recently, the cDNAs for a family of renal K+ channels, ROMK1, -2 and -3, were identified. Based on the biophysical properties and mRNA distribution, it is believed that these ROMK cDNAs encode the apical K+ channels of TAL and CCD. However, the information for cellular and subcellular localization of the ROMK proteins in these tubules is still not available. METHODS Paraffin or frozen kidney sections from adult Sprague-Dawley rats were stained by polyclonal antibodies against the N- and C-terminal domain of ROMK. Immunoreactive staining was visualized by color development from horseradish peroxidase reaction. Membrane homogenates from kidney were analyzed by Western blot analysis. RESULTS The polyclonal antibodies against cytoplasmic epitope of ROMK recognized a approximately 42 kD protein in the membrane homogenates from kidney, but not from liver. Staining by immunocytochemistry revealed that ROMK channels were localized to the apical membranes of the distal nephron in cortex and outer medulla, including thick ascending limb and collecting tubule. ROMK staining was absent in glomerulus, proximal tubule and inner medulla. Double staining of the tissue section with both ROMK-specific and H+-ATPase-specific antibodies revealed labeling of ROMK in the principal cells of the collecting tubules. CONCLUSIONS These results further strengthen the idea that ROMK channels play important roles in the recycling of K+ in TAL and the secretion of K+ in CCD.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009399 Nephrons The functional units of the kidney, consisting of the glomerulus and the attached tubule. Nephron
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005629 Frozen Sections Thinly cut sections of frozen tissue specimens prepared with a cryostat or freezing microtome. Frozen Section,Section, Frozen,Sections, Frozen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
November 1997, The American journal of physiology,
Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
June 1995, The American journal of physiology,
Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
January 1999, Experimental nephrology,
Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
June 1998, The Journal of physiology,
Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
November 2000, Journal of the American Society of Nephrology : JASN,
Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
June 2011, American journal of physiology. Renal physiology,
Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
October 1995, Kidney international,
Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
December 1997, Journal of the American Society of Nephrology : JASN,
Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
September 2013, Current opinion in nephrology and hypertension,
Y Kohda, and W Ding, and E Phan, and I Housini, and J Wang, and R A Star, and C L Huang
June 2000, American journal of physiology. Renal physiology,
Copied contents to your clipboard!