A novel mechanism for upregulation of the Escherichia coli K-12 hmp (flavohaemoglobin) gene by the 'NO releaser', S-nitrosoglutathione: nitrosation of homocysteine and modulation of MetR binding to the glyA-hmp intergenic region. 1998

J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
The Krebs Institute for Biomolecular Research, Department of Molecular Biology & Biotechnology, The University of Sheffield, UK.

The flavohaemoglobin gene, hmp, of Escherichia coli is upregulated by nitric oxide (NO) in a SoxRS-independent manner. We now show that hmp expression is also upregulated by S-nitrosoglutathione (GSNO, widely used as an NO releaser) and sodium nitroprusside (SNP, which is a NO+ donor). Elevated homocysteine (Hcy) levels, achieved either by adding Hcy extracellularly or using metE mutants, decreased hmp expression. Conversely, metC mutants (defective in Hcy synthesis) had higher levels of hmp expression. Mutations in metR abolished hmp induction by GSNO and SNP, and hmp expression became insensitive to Hcy. We propose that the previously documented modulation by Hcy of MetR binding to the glyA-hmp intergenic regulatory region regulates hmp transcription. Although two MetR binding sites are present in this region, only the higher affinity site proximal to hmp is required for hmp induction by GSNO and SNP. GSNO and SNP react with Hcy in vitro under physiologically relevant conditions of pH and temperature generating S-nitrosohomocysteine, although in the latter case this would be co-ordinated to the Fe in SNP as a stable species. The free S-nitrosocysteine generated in the reaction with GSNO breaks down to release NO more readily than via homolysis of GSNO. As GSNO and SNP upregulate hmp similarly, the NO released in the former case on reaction with homocysteine cannot be involved in hmp regulation.

UI MeSH Term Description Entries
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D009603 Nitroso Compounds Organic compounds containing the nitroso (-N Compounds, Nitroso
D004093 Dihydropteridine Reductase An enzyme that catalyzes the reduction of 6,7-dihydropteridine to 5,6,7,8-tetrahydropteridine in the presence of NADP+. Defects in the enzyme are a cause of PHENYLKETONURIA II. Formerly listed as EC 1.6.99.7. 6,7-Dihydropteridine Reductase,6,7 Dihydropteridine Reductase,Reductase, 6,7-Dihydropteridine,Reductase, Dihydropteridine
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
September 1989, Journal of bacteriology,
J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
April 1996, FEMS microbiology letters,
J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
July 1995, Journal of bacteriology,
J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
July 2002, The EMBO journal,
J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
September 2004, Canadian journal of microbiology,
J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
November 1996, FEMS microbiology letters,
J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
January 1999, Research in microbiology,
J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
February 1999, FEBS letters,
J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
January 1995, FEMS microbiology letters,
J Membrillo-Hernández, and M D Coopamah, and A Channa, and M N Hughes, and R K Poole
July 1996, Microbiology (Reading, England),
Copied contents to your clipboard!