De novo fatty acid synthesis is required for establishment of cell type-specific gene transcription during sporulation in Bacillus subtilis. 1998

G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina.

A hallmark of sporulation of Bacillus subtilis is the formation of two distinct cells by an asymmetric septum. The developmental programme of these two cells involves the compartmentalized activities of sigmaE in the larger mother cell and of sigmaF in the smaller prespore. A potential role of de novo lipid synthesis on development was investigated by treating B. subtilis cells with cerulenin, a specific inhibitor of fatty acid biosynthesis. These experiments demonstrated that spore formation requires de novo fatty acid synthesis at the onset of sporulation. The transcription of the sporulation genes that are induced before the formation of two cell types or that are under the exclusive control of sigmaF occurred in the absence of fatty acid synthesis, as monitored by spo-lacZ fusions. However, expression of lacZ fusions to genes that required activation of sigmaE for transcription was inhibited in the absence of fatty acid synthesis. The block in sigmaE-directed gene expression in cerulenin-treated cells was caused by an inability to process pro-sigmaE to its active form. Electron microscopy revealed that these fatty acid-starved cells initiate abnormal polar septation, suggesting that de novo fatty acid synthesis may be essential to couple the activation of the mother cell transcription factors with the formation of the differentiating cells.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002569 Cerulenin An epoxydodecadienamide isolated from several species, including ACREMONIUM, Acrocylindrum, and Helicoceras. It inhibits the biosynthesis of several lipids by interfering with enzyme function. 2,3-Epoxy-4-oxo-7,10-dodecadienoylamide
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012808 Sigma Factor A protein which is a subunit of RNA polymerase. It effects initiation of specific RNA chains from DNA. Sigma Element,Sigma Initiation Factor,Sigma Subunit,Minor Sigma Factor,RNA Polymerase Sigma Factor H,Factor, Sigma,Factor, Sigma Initiation,Initiation Factor, Sigma,Sigma Factor, Minor,Subunit, Sigma

Related Publications

G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
October 1994, Current opinion in genetics & development,
G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
March 1992, Molecular microbiology,
G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
February 1992, BioEssays : news and reviews in molecular, cellular and developmental biology,
G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
January 2013, Molecular microbiology,
G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
October 1991, Current opinion in genetics & development,
G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
May 2001, Journal of bacteriology,
G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
October 2004, PLoS biology,
G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
February 1999, Genes & development,
G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
September 1983, Journal of bacteriology,
G E Schujman, and R Grau, and H C Gramajo, and L Ornella, and D de Mendoza
September 2006, Journal of bacteriology,
Copied contents to your clipboard!