Freeze-fracture analysis of plasma membranes of CHO cells stably expressing aquaporins 1-5. 1998

A N van Hoek, and B Yang, and S Kirmiz, and D Brown
Renal Unit and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

Several studies suggest that aquaporin water channels can be identified in membranes by freeze-fracture electron microscopy. For this report, Chinese Hamster ovary cells were stably transfected with cDNAs encoding aquaporins 1-5. Measurement of the osmotic water permeability of the cells confirmed that functional protein was expressed and delivered to the plasma membrane. By freeze-fracture electron microscopy, a 20% increase in intramembrane particle (IMP) density was found in plasma membranes of cells expressing AQP2, 3 and 5, and a 100% increase was measured in AQP1-expressing cells, when compared to mock-transfected cells. On membranes of cells expressing AQP4, large aggregates of IMPs were organized into orthogonal arrays, which occupied 10-20% of the membrane surface. IMP aggregates were never seen in AQP2-transfected cells. Hexagonally packed IMP clusters were detected in approximately 5% of the membranes from AQP3-expressing cells. Particle size-distribution analysis of rotary shadowed IMPs showed a significant shift from 13. 5 (control cells) to 8.5 nm or less in AQP-expressing cells; size distribution analysis of unidirectionally shadowed IMPs also showed a significant change when compared to control. Some IMPs in AQP expressing cells had features consistent with the idea that aquaporins are assembled as tetramers. The results demonstrate that in transfected CHO cells, AQP transfection modifies the general appearance and number of IMPs on the plasma membrane, and show that only AQP4 assembles into well-defined IMP arrays.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D051398 Aquaporin 1 Aquaporin 1 forms a water-specific channel that is constitutively expressed at the PLASMA MEMBRANE of ERYTHROCYTES and KIDNEY TUBULES, PROXIMAL. It provides these cells with a high permeability to WATER. In humans polymorphisms of this protein result in the Colton blood group antigen. AQP-CHIP Protein,AQP1 Protein,Aquaporin 1 Protein,Aquaporin-CHIP,CHIP28 Protein,Channel-Forming Integral Membrane Protein Of 28 kDa,AQP CHIP Protein,Aquaporin CHIP,Channel Forming Integral Membrane Protein Of 28 kDa

Related Publications

A N van Hoek, and B Yang, and S Kirmiz, and D Brown
October 1978, The Journal of investigative dermatology,
A N van Hoek, and B Yang, and S Kirmiz, and D Brown
August 1981, Neurology,
A N van Hoek, and B Yang, and S Kirmiz, and D Brown
January 1999, Tsitologiia,
A N van Hoek, and B Yang, and S Kirmiz, and D Brown
November 1983, Brain research,
A N van Hoek, and B Yang, and S Kirmiz, and D Brown
February 1998, Biochemical and biophysical research communications,
A N van Hoek, and B Yang, and S Kirmiz, and D Brown
July 2007, European journal of pharmacology,
A N van Hoek, and B Yang, and S Kirmiz, and D Brown
December 1996, Annals of the New York Academy of Sciences,
A N van Hoek, and B Yang, and S Kirmiz, and D Brown
August 1991, Nature,
A N van Hoek, and B Yang, and S Kirmiz, and D Brown
November 1993, Biochimica et biophysica acta,
A N van Hoek, and B Yang, and S Kirmiz, and D Brown
November 1998, Trends in cell biology,
Copied contents to your clipboard!