Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors. 1998

R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
Department of Pharmacology, Vanderbilt University School of Medicine, Veterans Administration Medical Center, Nashville, TN 37232-6600, USA.

Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.

UI MeSH Term Description Entries
D008297 Male Males
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002831 Choroid Plexus A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID. Chorioid Plexus,Plexus Choroideus,Choroideus, Plexus,Plexus, Chorioid,Plexus, Choroid
D004130 N,N-Dimethyltryptamine An N-methylated indoleamine derivative and serotonergic hallucinogen which occurs naturally and ubiquitously in several plant species including Psychotria veridis. It also occurs in trace amounts in mammalian brain, blood, and urine, and is known to act as an agonist or antagonist of certain SEROTONIN RECEPTORS. Dimethyltryptamine,N,N Dimethyltryptamine
D004192 Discrimination, Psychological Differential response to different stimuli. Discrimination, Psychology,Psychological Discrimination
D006213 Hallucinogens Drugs capable of inducing illusions, hallucinations, delusions, paranoid ideations, and other alterations of mood and thinking. Despite the name, the feature that distinguishes these agents from other classes of drugs is their capacity to induce states of altered perception, thought, and feeling that are not experienced otherwise. Hallucinogen,Hallucinogenic Agent,Hallucinogenic Drug,Hallucinogenic Substance,Psychedelic,Psychedelic Agent,Psychedelic Agents,Psychotomimetic Agent,Psychotomimetic Agents,Hallucinogenic Agents,Hallucinogenic Drugs,Hallucinogenic Substances,Psychedelics,Agent, Hallucinogenic,Agent, Psychedelic,Agent, Psychotomimetic,Agents, Hallucinogenic,Agents, Psychedelic,Agents, Psychotomimetic,Drug, Hallucinogenic,Drugs, Hallucinogenic,Substance, Hallucinogenic,Substances, Hallucinogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
April 2003, Life sciences,
R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
November 1997, Journal of neuroscience methods,
R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
February 1996, The Journal of biological chemistry,
R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
July 2019, ACS chemical neuroscience,
R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
February 2009, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
May 2004, The Journal of biological chemistry,
R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
October 2008, European journal of pharmacology,
R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
February 2009, Pharmacology & therapeutics,
R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
January 2018, PloS one,
R L Smith, and H Canton, and R J Barrett, and E Sanders-Bush
January 1999, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!