Stopped-flow kinetic analysis of the interaction of Escherichia coli RNA polymerase with the bacteriophage T7 A1 promoter. 1998

R S Johnson, and R E Chester
Department of Biochemistry, East Carolina University School of Medicine, Greenville, NC, 27858, USA. rjohnson@brody.med.ecu.edu

We have conducted a detailed kinetic and thermodynamic analysis of open complex formation between Escherichia coli RNA polymerase and the A1 promoter from bacteriophage T7 by monitoring alterations in the intrinsic protein fluorescence of RNA polymerase in stopped-flow kinetic studies. The stopped-flow kinetic data are consistent with a minimal model involving four steps for the formation of the open complex. Arrhenius plots for both the association and dissociation reactions for the equilibrium binding step leading to the formation of the closed complex were linear. With a positive van't Hoff enthalpy (DeltaHobs=18(+/-3) kcal mol-1) and a positive entropy (DeltaSobs=94(+/-15) e.u.) change for the equilibrium binding process, formation of the closed complex is entropy driven. The value of the apparent association rate constant for this binding step was approximately three orders of magnitude less than that expected for facilitated binding. Thus, a minimum of two steps is required to describe the formation of the closed complex. A fast facilitated binding step appears to be followed by a conformational change in RNA polymerase which leads to the formation of the closed complex. A non-linear Arrhenius plot obtained for the isomerization step in the conversion of the closed complex to an open one indicates that there are at least two steps in the conversion of the closed complex to an open one. We have assigned the apparent activation energy of 9.1(+/-1.9) kcal mol-1 to the step involving a conformational change in the protein and nucleation of strand separation and the apparent activation energy of 46(+/-12) kcal mol-1 to the step involving strand separation. At 37 degreesC, the value of the macroscopic isomerization rate constant (0.26(+/-0.02) s-1) in the conversion of the closed complex to an open one was an order of magnitude greater than the value reported in abortive initiation assays. This suggests that open complex formation is not the rate-determining step in the initiation of transcription in the case of the A1 promoter. To gain greater insight into the mechanism of initiation at the A1 promoter, we investigated the process of abortive product formation (pppApU) under conditions of non-saturating concentrations of the initiating nucleotide. A comparison of the lag times in the approach to the steady-state rate of abortive product formation when the reaction was initiated by the addition of UTP, ATP, the enzyme and the A1 promoter, respectively, indicates that the initiating nucleotide plays a key regulatory role in the initiation of transcription in the case of the A1 promoter.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

R S Johnson, and R E Chester
February 1984, The Journal of biological chemistry,
R S Johnson, and R E Chester
October 1970, Nature,
R S Johnson, and R E Chester
September 1975, European journal of biochemistry,
R S Johnson, and R E Chester
October 1992, Proceedings of the National Academy of Sciences of the United States of America,
R S Johnson, and R E Chester
December 1977, Journal of virology,
R S Johnson, and R E Chester
November 1981, European journal of biochemistry,
R S Johnson, and R E Chester
April 1999, Biochemistry,
Copied contents to your clipboard!