The host-protein-independent iron uptake by Tritrichomonas foetus. 1998

J Tachezy, and P Suchan, and J Schrével, and J Kulda
Department of Parasitology, Faculty of Science, Charles University, Prague 2, 128 44, Czech Republic.

Iron uptake from a low-molecular-weight chelate Fe(III)-nitriloacetate (Fe-NTA) by anaerobic protozoan parasite Tritrichomonas foetus was investigated and compared with that from iron-saturated lactoferrin and transferrin. The results showed that the iron uptake from Fe-NTA was saturable (Km = 2.7 microM, Vmax = 21.7 fmol. microg-1.min-1) and time, and temperature dependent, thus suggesting involvement of a membrane transport carrier. The accumulation of iron from 59Fe-NTA was inhibited by NaF and iron chelators. Amilorid and inhibitors of endosome acidification did not influence the process. Ascorbate stimulated the uptake while a membrane impermeable chelator of bivalent iron (bathophenanthroline disulfonic acid) was inhibitory, suggesting that prior to transport iron is reduced extracellularly. In accord with this assumption, the reduction of ferric to ferrous iron in the presence of intact T. foetus cells was demonstrated. Dynamics and properties of uptake of iron released from transferrin were similar to those from Fe-NTA, indicating involvement of common mechanisms. Iron uptake from lactoferrin displayed profoundly different characteristics consistent with receptor-mediated endocytosis. Metronidazole-resistant derivative of the investigated T. foetus strain showed marked deficiency in iron acquisition from Fe-NTA and transferrin while its iron uptake from lactoferrin was higher than that of the parent strain. The results presented show that T. foetus possesses at least two independent mechanisms that mediate acquisition of iron.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007502 Iron Chelating Agents Organic chemicals that form two or more coordination links with an iron ion. Once coordination has occurred, the complex formed is called a chelate. The iron-binding porphyrin group of hemoglobin is an example of a metal chelate found in biological systems. Iron Chelates,Agents, Iron Chelating,Chelates, Iron,Chelating Agents, Iron
D007781 Lactoferrin An iron-binding protein that was originally characterized as a milk protein. It is widely distributed in secretory fluids and is found in the neutrophilic granules of LEUKOCYTES. The N-terminal part of lactoferrin possesses a serine protease which functions to inactivate the TYPE III SECRETION SYSTEM used by bacteria to export virulence proteins for host cell invasion. Lactotransferrin
D009571 Nitrilotriacetic Acid A derivative of acetic acid, N(CH2COOH)3. It is a complexing (sequestering) agent that forms stable complexes with Zn2+. (From Miall's Dictionary of Chemistry, 5th ed.) Aluminum Nitrilotriacetate,Dysprosium Nitrilotriacetate,Trisodium Nitrilotriacetate,Acid, Nitrilotriacetic,Nitrilotriacetate, Aluminum,Nitrilotriacetate, Dysprosium,Nitrilotriacetate, Trisodium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002738 Chloroquine The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. Aralen,Arechine,Arequin,Chingamin,Chlorochin,Chloroquine Sulfate,Chloroquine Sulphate,Khingamin,Nivaquine,Sulfate, Chloroquine,Sulphate, Chloroquine
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret
D000643 Ammonium Chloride An acidifying agent that has expectorant and diuretic effects. Also used in etching and batteries and as a flux in electroplating. Sal Ammoniac,Ammoniac, Sal,Chloride, Ammonium

Related Publications

J Tachezy, and P Suchan, and J Schrével, and J Kulda
December 2004, Microbiology (Reading, England),
J Tachezy, and P Suchan, and J Schrével, and J Kulda
July 2016, Parasitology,
J Tachezy, and P Suchan, and J Schrével, and J Kulda
November 2006, The Veterinary clinics of North America. Food animal practice,
J Tachezy, and P Suchan, and J Schrével, and J Kulda
May 1984, Molecular and biochemical parasitology,
J Tachezy, and P Suchan, and J Schrével, and J Kulda
August 1983, Molecular and biochemical parasitology,
J Tachezy, and P Suchan, and J Schrével, and J Kulda
December 1991, Journal of clinical microbiology,
J Tachezy, and P Suchan, and J Schrével, and J Kulda
June 1967, The Journal of parasitology,
J Tachezy, and P Suchan, and J Schrével, and J Kulda
August 1999, Microbes and infection,
J Tachezy, and P Suchan, and J Schrével, and J Kulda
October 2003, Experimental parasitology,
J Tachezy, and P Suchan, and J Schrével, and J Kulda
March 2005, Trends in parasitology,
Copied contents to your clipboard!