A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. 1998

Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
Department of Pediatrics, Division of Molecular Cardiovascular Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA.

Familial hypertrophic cardiomyopathy can be caused by mutations in genes encoding sarcomeric proteins, including the cardiac isoform of myosin binding protein C (MyBP-C), and multiple mutations which cause truncated forms of the protein to be made are linked to the disease. We have created transgenic mice in which varying amounts of a mutated MyBP-C, lacking the myosin and titin binding domains, are expressed in the heart. The transgenically encoded, truncated protein is stable but is not incorporated efficiently into the sarcomere. The transgenic muscle fibers showed a leftward shift in the pCa2+-force curve and, importantly, their power output was reduced. Additionally, expression of the mutant protein leads to decreased levels of endogenous MyBP-C, resulting in a striking pattern of sarcomere disorganization and dysgenesis.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002312 Cardiomyopathy, Hypertrophic A form of CARDIAC MUSCLE disease, characterized by left and/or right ventricular hypertrophy (HYPERTROPHY, LEFT VENTRICULAR; HYPERTROPHY, RIGHT VENTRICULAR), frequent asymmetrical involvement of the HEART SEPTUM, and normal or reduced left ventricular volume. Risk factors include HYPERTENSION; AORTIC STENOSIS; and gene MUTATION; (FAMILIAL HYPERTROPHIC CARDIOMYOPATHY). Cardiomyopathy, Hypertrophic Obstructive,Cardiomyopathies, Hypertrophic,Cardiomyopathies, Hypertrophic Obstructive,Hypertrophic Cardiomyopathies,Hypertrophic Cardiomyopathy,Hypertrophic Obstructive Cardiomyopathies,Hypertrophic Obstructive Cardiomyopathy,Obstructive Cardiomyopathies, Hypertrophic,Obstructive Cardiomyopathy, Hypertrophic
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012518 Sarcomeres The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length. Sarcomere

Related Publications

Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
April 2004, Cell research,
Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
March 1997, Circulation research,
Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
May 1998, Trends in cardiovascular medicine,
Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
December 2005, Human molecular genetics,
Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
May 1996, Science (New York, N.Y.),
Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
March 2002, Circulation research,
Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
December 1995, Nature genetics,
Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
December 1995, Nature genetics,
Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
April 1998, The New England journal of medicine,
Q Yang, and A Sanbe, and H Osinska, and T E Hewett, and R Klevitsky, and J Robbins
July 2010, Journal of cardiology,
Copied contents to your clipboard!