Ionic control of chromosome architecture in living and permeabilized cells. 1998

K Bojanowski, and D E Ingber
Department of Surgery and Department of Pathology, Children's Hospital and Harvard Medical School, Boston, Massachusetts, 02115, USA.

Studies with isolated chromatin show that higher order chromosome architecture can be regulated by ionic conditions; however, the physiological relevance of these findings remains unknown. In the present study, chromosome architecture was analyzed in situ in living and detergent-extracted cells exposed to different ionic conditions. In intact mitotic endothelial cells, chromosomes instantly unfolded as detected by phase contrast microscopy when the salt concentration in the culture medium was increased from 110 to 410 mM NaCl or from 0 to 65 mM MgCl2. When the ions were removed and the preexisting culture conditions were restored, chromosomes refolded into their original shapes and subsequently underwent mitotic division. Similar reversible effects were observed on nucleolar structure in living interphase cells as well as on mitotic chromosomes exposed to high salt after cell membranes were removed by treatment with Triton X-100. This permeabilized mitotic cell model was then used to identify proteins that remained tightly associated with chromatin during the ion-driven chromosome unfolding-refolding cycle and which therefore could be important for maintenance of chromosome structure. Under these conditions in which disassembled chromosomes retained their ability to fully recondense, more than 95% of Topoisomerase I was extracted whereas approximately 25% of Topoisomerase IIalpha and 50% of Histone H1 remained tightly associated with chromatin. These data demonstrate the sensitivity of chromosome structure to variations in ionic concentration in situ and suggest that there are at least two distinct pools of Histone H1 and Topoisomerase IIalpha associated with chromatin during mitosis, one of which may be required for chromosome compaction.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Bojanowski, and D E Ingber
January 2014, Journal of molecular microbiology and biotechnology,
K Bojanowski, and D E Ingber
January 1987, Cell motility and the cytoskeleton,
K Bojanowski, and D E Ingber
January 1978, Cancer research,
K Bojanowski, and D E Ingber
October 2017, ACS chemical biology,
K Bojanowski, and D E Ingber
January 1982, Methods in cell biology,
K Bojanowski, and D E Ingber
January 2003, Biorheology,
K Bojanowski, and D E Ingber
March 1982, Analytical biochemistry,
K Bojanowski, and D E Ingber
January 1995, Methods in enzymology,
K Bojanowski, and D E Ingber
January 1989, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!