Subnuclear localization of the active variant surface glycoprotein gene expression site in Trypanosoma brucei. 1998

I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

In Trypanosoma brucei, transcription by RNA polymerase II and 5' capping of messenger RNA are uncoupled: a capped spliced leader is trans spliced to every RNA. This decoupling makes it possible to have protein-coding gene transcription driven by RNA polymerase I. Indeed, indirect evidence suggests that the genes for the major surface glycoproteins, variant surface glycoproteins (VSGs) in bloodstream-form trypanosomes, are transcribed by RNA polymerase I. In a single trypanosome, only one VSG expression site is maximally transcribed at any one time, and it has been speculated that transcription takes place at a unique site within the nucleus, perhaps in the nucleolus. We tested this by using fluorescence in situ hybridization. With probes that cover about 50 kb of the active 221 expression site, we detected nuclear transcripts of this site in a single fluorescent spot, which did not colocalize with the nucleolus. Analysis of marker gene-tagged active expression site DNA by fluorescent DNA in situ hybridization confirmed the absence of association with the nucleolus. Even an active expression site in which the promoter had been replaced by an rDNA promoter did not colocalize with the nulceolus. As expected, marker genes inserted in the rDNA array predominantly colocalize with the nucleolus, whereas the tubulin gene arrays do not. We conclude that transcription of the active VSG expression site does not take place in the nucleolus.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014346 Trypanosoma brucei brucei A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina). Trypanosoma brucei,Trypanosoma brucei bruceus,Trypanosoma bruceus,brucei brucei, Trypanosoma,brucei, Trypanosoma brucei,bruceus, Trypanosoma,bruceus, Trypanosoma brucei
D014643 Variant Surface Glycoproteins, Trypanosoma Glycoproteins attached to the surface coat of the trypanosome. Many of these glycoproteins show amino acid sequence diversity expressed as antigenic variations. This continuous development of antigenically distinct variants in the course of infection ensures that some trypanosomes always survive the development of immune response to propagate the infection. Surface Variant Glycoproteins, Trypanosoma,Trypanosoma Variant Surface Coat Glycoproteins,SSP-4,VSG 117,VSG 118,VSG 221
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
May 1986, The Journal of biological chemistry,
I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
September 1990, The EMBO journal,
I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
May 2003, Molecular and biochemical parasitology,
I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
April 2002, Molecular and biochemical parasitology,
I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
February 1988, Molecular and cellular biology,
I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
January 1998, Molecular and cellular biology,
I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
September 1999, The EMBO journal,
I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
January 1985, Nature,
I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
April 1988, Molecular and biochemical parasitology,
I Chaves, and J Zomerdijk, and A Dirks-Mulder, and R W Dirks, and A K Raap, and P Borst
July 2002, Molecular and biochemical parasitology,
Copied contents to your clipboard!