Molecular recognition of a peptide mimic of the Lewis Y antigen by an anti-Lewis Y antibody. 1997

R Murali, and T Kieber-Emmons
Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA.

Peptides as mimics of carbohydrates display a distinct advantage in vaccine design because of ease of synthesis and their inherent T cell-dependent nature as immunogens. While peptides that mimic carbohydrates have been described, it is not clear how they do so. To further our insight into structural relationships between peptide-mimics and carbohydrate structures, we have analyzed a potential recognition scheme between the murine monoclonal antibody, B3, directed against the tumor-associated antigen Lewis Y oligosaccharide and a peptide identified from phage display screening with B3. The Lewis Y core antigen is a difucosylated structure consisting of four hexose units. The B3 antibody binds to the peptide sequence APWLYGPA in which the putative sequence APWLY is critical for binding to the antibody. Not having experimental structural information for B3, the crystal structure of another anti-Lewis Y antibody, BR96, solved in complex with a nonoate methyl ester Lewis Y tetrasaccharide, provides a molecular basis for LeY antigen recognition and specificity, and how this binding relates to peptide binding. As a guide to place the APWLY motif in the B3 combining site, a fragment library was searched for analogous compounds that have the potential to bind to B3. Our modeling study shows that the B3-peptide complex shares similar recognition features for the difucosylated type 2 lactoseries' structure. This analysis provides a molecular perspective for peptide mimicry of a carbohydrate epitope.

UI MeSH Term Description Entries
D007983 Lewis Blood Group Antigens Carbohydrate antigens structurally related to the ABH BLOOD-GROUP SYSTEM. They may occur as a modification of saccharide chains on glycolipids or glycoproteins on cell surfaces or in plasma, or as free oligosaccharides in secretions. Lewis antigens are not synthesized in blood cells. Instead Lewis glycolipids present in plasma are absorbed onto the surface of ERYTHROCYTES; LYMPHOCYTES; and PLATELETS. The phenotypes Le(a) and Le(b) are the result of the actions of two genes the Le gene (fucosyltransferase FUT3) and the Se gene (fucosyltransferase FUT2) on the precursor carbohydrate, glycolipid or glycoprotein. Other FUCOSYLTRANSFERASES can also synthesize the Lewis antigens. Blood Group Lewis Related Antigens,Lewis Antigen Related Tumor-Associated Antigens,Lewis Antigens,Lewis Blood Group Related Antigens,Lewis Blood Group Related Tumor-Associated Antigens,Lewis Blood-Group System,Lewis Related Antigens,Lewis System,Sialyl Lewis Antigens,Le Antigens,Le(a) Blood Group System,Antigens, Lewis,Antigens, Lewis Related,Antigens, Sialyl Lewis,Blood-Group System, Lewis,Lewis Antigen Related Tumor Associated Antigens,Lewis Blood Group Related Tumor Associated Antigens,Lewis Blood Group System
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002236 Carbohydrate Conformation The characteristic 3-dimensional shape of a carbohydrate. Carbohydrate Linkage,Carbohydrate Conformations,Carbohydrate Linkages,Conformation, Carbohydrate,Conformations, Carbohydrate,Linkage, Carbohydrate,Linkages, Carbohydrate
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

R Murali, and T Kieber-Emmons
April 2020, Journal of biochemistry,
R Murali, and T Kieber-Emmons
October 2017, Science (New York, N.Y.),
R Murali, and T Kieber-Emmons
December 2019, Journal of immunology (Baltimore, Md. : 1950),
R Murali, and T Kieber-Emmons
March 1999, The journal of peptide research : official journal of the American Peptide Society,
R Murali, and T Kieber-Emmons
September 2020, Vaccines,
R Murali, and T Kieber-Emmons
May 2020, Journal of immunology (Baltimore, Md. : 1950),
R Murali, and T Kieber-Emmons
January 1993, Journal of biochemistry,
R Murali, and T Kieber-Emmons
August 2008, Cancer biotherapy & radiopharmaceuticals,
R Murali, and T Kieber-Emmons
January 1991, Acta medica portuguesa,
R Murali, and T Kieber-Emmons
September 2020, The Biochemical journal,
Copied contents to your clipboard!