A maximum-likelihood approach to single-particle image refinement. 1998

F J Sigworth
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, 06520-8026, USA.

The alignment of single-particle images fails at low signal-to-noise ratios and small particle sizes, because noise produces false peaks in the cross-correlation function used for alignment. A maximum-likelihood approach to the two-dimensional alignment problem is described which allows the underlying structure to be estimated from large data sets of very noisy images. Instead of finding the optimum alignment for each image, the algorithm forms a weighted sum over all possible in-plane rotations and translations of the image. The weighting factors, which are the probabilities of the image transformations, are computed as the exponential of a cross-correlation function. Simulated data sets were constructed and processed by the algorithm. The results demonstrate a greatly reduced sensitivity to the choice of a starting reference, and the ability to recover structures from large data sets having very low signal-to-noise ratios.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D016013 Likelihood Functions Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters. Likelihood Ratio Test,Maximum Likelihood Estimates,Estimate, Maximum Likelihood,Estimates, Maximum Likelihood,Function, Likelihood,Functions, Likelihood,Likelihood Function,Maximum Likelihood Estimate,Test, Likelihood Ratio
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D020285 Cryoelectron Microscopy Electron microscopy involving rapid freezing of the samples. The imaging of frozen-hydrated molecules and organelles permits the best possible resolution closest to the living state, free of chemical fixatives or stains. Electron Cryomicroscopy,Cryo-electron Microscopy,Cryo electron Microscopy,Cryo-electron Microscopies,Cryoelectron Microscopies,Cryomicroscopies, Electron,Cryomicroscopy, Electron,Electron Cryomicroscopies,Microscopies, Cryo-electron,Microscopies, Cryoelectron,Microscopy, Cryo-electron,Microscopy, Cryoelectron

Related Publications

F J Sigworth
May 2011, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society,
F J Sigworth
September 2003, Chemphyschem : a European journal of chemical physics and physical chemistry,
F J Sigworth
January 1982, IEEE transactions on pattern analysis and machine intelligence,
F J Sigworth
July 2009, Acta crystallographica. Section D, Biological crystallography,
F J Sigworth
December 2003, Acta crystallographica. Section D, Biological crystallography,
F J Sigworth
September 2005, Bioinformatics (Oxford, England),
F J Sigworth
August 2004, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society,
Copied contents to your clipboard!