Carbamazepine-induced release of serotonin from rat hippocampus in vitro. 1998

J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine, Peoria 61656, USA.

OBJECTIVE Carbamazepine is one of several antiepileptic drugs (AEDs) that release the inhibitory neurotransmitter serotonin as part of their pharmacodynamic action on brain neurons. We undertook this study to investigate the cellular processes by which carbamazepine (CBZ) releases serotonin from brain tissue. METHODS Tissue slices were prepared from hippocampi of Sprague-Dawley rats. These hippocampal slices were preincubated in vitro in a buffer so that neurons within the slice would take up tritium-labeled serotonin. Subsequently the slices were superfused with buffer containing CBZ or other chemicals (or both) that increase the overflow of serotonin radioactivity. RESULTS Carbamazepine produced a concentration-dependent (50, 125, 250, or 500 microM) increase in basal overflow of serotonin radioactivity from superfused rat hippocampal slices in vitro. In contrast, these concentrations did not alter potassium-stimulated release, suggesting that the CBZ-induced release does not depend on depolarization or exocytosis. Blockade of the neuronal membrane serotonin transporter by fluoxetine (1 microM) or citalopram (2 microM) did not alter overflow of serotonin radioactivity produced by 250 microM CBZ. p-chloramphetamine (10 microM) produced a substantial increase in overflow of serotonin radioactivity, and this effect appears to be antagonized by 250 microM CBZ. Uptake of [3H]-labeled serotonin into hippocampal synaptosomes was inhibited by CBZ with a median inhibitory concentration (IC50) of 511+/-33 microM and a Hill coefficient of 0.87+/-0.11, suggesting competitive inhibition of uptake by CBZ. CONCLUSIONS We conclude that CBZ (a) releases serotonin from hippocampal slices independent of exocytosis and by a mechanism not involving the neuronal membrane serotonin transporter, and (b) at high enough concentration, blocks the neuronal serotonin transporter.

UI MeSH Term Description Entries
D008297 Male Males
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D002220 Carbamazepine A dibenzazepine that acts as a sodium channel blocker. It is used as an anticonvulsant for the treatment of grand mal and psychomotor or focal SEIZURES. It may also be used in the management of BIPOLAR DISORDER, and has analgesic properties. Amizepine,Carbamazepine Acetate,Carbamazepine Anhydrous,Carbamazepine Dihydrate,Carbamazepine Hydrochloride,Carbamazepine L-Tartrate (4:1),Carbamazepine Phosphate,Carbamazepine Sulfate (2:1),Carbazepin,Epitol,Finlepsin,Neurotol,Tegretol
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005473 Fluoxetine The first highly specific serotonin uptake inhibitor. It is used as an antidepressant and often has a more acceptable side-effects profile than traditional antidepressants. Fluoxetin,Fluoxetine Hydrochloride,Lilly-110140,N-Methyl-gamma-(4-(trifluoromethyl)phenoxy)benzenepropanamine,Prozac,Sarafem,Lilly 110140,Lilly110140
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
May 1980, European journal of pharmacology,
J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
November 1990, European journal of pharmacology,
J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
May 2011, Nutritional neuroscience,
J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
August 1980, The Journal of surgical research,
J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
January 1990, Neuroscience,
J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
January 1984, Journal of neuroscience research,
J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
December 1977, Research communications in chemical pathology and pharmacology,
J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
April 1985, Journal of neurochemistry,
J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
January 1987, Brain research,
J W Dailey, and M E Reith, and K R Steidley, and J C Milbrandt, and P C Jobe
July 1987, The Journal of endocrinology,
Copied contents to your clipboard!