GABAA-receptor subtypes in developing brain. Actors or spectators? 1998

J Paysan, and J M Fritschy
Institute of Pharmacology, University of Zurich, Switzerland.

Distinct GABAA-receptor subtypes, differing in subunit composition, physiology, and pharmacology, are expressed in fetal, neonatal, and adult brain. Their developmental schedule, evidenced by the differential maturation of the GABAA-receptor subunits alpha 1, alpha 2, and alpha 5, is similar in rodents and primates, indicating that the regulation of receptor subtypes is conserved across species. "Adult" GABAA-receptors, characterized by the alpha 1-subunit immunoreactivity, are largely absent from fetal brain. They appear, however, before the onset of functional inhibitory connections, suggesting that GABAA-receptors may play an active role in the formation of GABAergic synapses. In neocortex, the maturation of GABAA-receptor subtypes is governed by an intrinsic program, leading to an area- and lamina-specific distribution as early as E20 in rats. In primary somatosensory and visual areas, this pattern is influenced postnatally by the ingrowing thalamocortical projection, a process that can be prevented experimentally by lesioning the thalamus at birth. Altogether, the expression of GABAA-receptor subtypes in developing brain reflects the changing functional needs of neurons during differentiation, the formation of inhibitory circuits, and the emergence of functionally distinct brain compartments.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D020033 Protein Isoforms Different forms of a protein that may be produced from different GENES, or from the same gene by ALTERNATIVE SPLICING. Isoform,Isoforms,Protein Isoform,Protein Splice Variant,Splice Variants, Protein,Protein Splice Variants,Isoform, Protein,Isoforms, Protein,Splice Variant, Protein,Variant, Protein Splice,Variants, Protein Splice

Related Publications

J Paysan, and J M Fritschy
June 2013, Revista de enfermeria (Barcelona, Spain),
J Paysan, and J M Fritschy
September 1996, Trends in neurosciences,
J Paysan, and J M Fritschy
April 1996, Trends in neurosciences,
J Paysan, and J M Fritschy
May 2012, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver,
J Paysan, and J M Fritschy
January 1992, Advances in biochemical psychopharmacology,
J Paysan, and J M Fritschy
September 2009, Trends in pharmacological sciences,
J Paysan, and J M Fritschy
March 1988, Trends in neurosciences,
J Paysan, and J M Fritschy
May 2019, Animal cognition,
Copied contents to your clipboard!