1,25-Dihydroxyvitamin D3 enhances degranulation of mast cells. 1998

M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
Basil and Gerald Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Israel.

The mast cell lines rat basophilic leukemia (RBL) and mouse C57 cells respond to IgE/antigen complexes by degranulation. Treatment of these cells with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), (10-100 nM) for 24-48 h enhanced IgE/antigen-induced exocytosis as monitored by release of hexosaminidase. A short term incubation with the hormone did not affect exocytosis, ruling out a rapid non genomic mechanism. The presence of vitamin D receptors, demonstrated by immunoblotting and the lack of effect of 24,25(OH)2D3 suggest a role for these receptors in the enhancing effect. 1,25(OH)2D3 also enhanced exocytosis induced by the calcium ionophore A23187 in the presence or absence of phorbol ester indicating modulation of events distal to signal transduction. 1,25(OH)2D3 enhanced exocytosis in the presence of cytochalasin D, indicating that the action of the hormone is not due to effects on microfilament structure. The results of this study suggest that 1,25(OH)2D3 may affect the allergic or pro-inflammatory potential of mast cells.

UI MeSH Term Description Entries
D007073 Immunoglobulin E An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE). IgE
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000941 Antigens Substances that are recognized by the immune system and induce an immune reaction. Antigen
D001619 beta-N-Acetylhexosaminidases A hexosaminidase specific for non-reducing N-acetyl-D-hexosamine residues in N-acetyl-beta-D-hexosaminides. It acts on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES. Two specific mammalian isoenzymes of beta-N-acetylhexoaminidase are referred to as HEXOSAMINIDASE A and HEXOSAMINIDASE B. Deficiency of the type A isoenzyme causes TAY-SACHS DISEASE, while deficiency of both A and B isozymes causes SANDHOFF DISEASE. The enzyme has also been used as a tumor marker to distinguish between malignant and benign disease. beta-N-Acetylhexosaminidase,N-Acetyl-beta-D-hexosaminidase,beta-Hexosaminidase,beta-N-Acetyl-D-hexosaminidase,beta-N-Acetyl-hexosaminidase,N Acetyl beta D hexosaminidase,beta Hexosaminidase,beta N Acetyl D hexosaminidase,beta N Acetyl hexosaminidase,beta N Acetylhexosaminidase,beta N Acetylhexosaminidases
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
December 1990, Experimental hematology,
M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
February 1999, Journal of cellular physiology,
M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
June 2015, Asian Pacific journal of tropical medicine,
M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
March 1985, Endocrinology,
M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
December 1989, Proceedings of the National Academy of Sciences of the United States of America,
M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
May 1984, Cancer research,
M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
November 1989, The Journal of biological chemistry,
M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
September 1997, Leukemia & lymphoma,
M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
March 1974, Science (New York, N.Y.),
M Shalita-Chesner, and R Koren, and Y A Mekori, and D Baram, and C Rotem, and U A Liberman, and A Ravid
September 1983, The Biochemical journal,
Copied contents to your clipboard!