Site-specific mutations of conserved residues in the phosphate-binding loop of the Arabidopsis UMP/CMP kinase alter ATP and UMP binding. 1998

L Zhou, and R Thornburg
Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa, 50011, USA.

All eukaryotic UMP/CMP kinases contain a glycine-rich sequence GGPG(S/A)GK at the N-terminus. This sequence is homologous to the conserved sequence GXXGXGK found in other ATP-binding proteins. To study the role of this conserved sequence in Arabidopsis UMP/CMP kinase, five conserved residues were mutated by site-directed mutagenesis to generate seven mutant enzymes: G21A, G22A, G24A, G26A, K27R, K27M, and K27E. The G21A and G26A mutants were degraded during the purification phase and were thus unable to be purified. Kinetic studies on the other mutants, when compared to studies on the wild-type enzyme, revealed that this sequence is important for ATP binding and enzyme catalysis. All mutants had a decreased kcat/KATPm value. The G22A and G24A mutants had about half of the kcat value of wildtype and 3.9-fold and 3.3-fold increases in KATPm values, respectively. The kcat/KATPm values in the K27M and K27E mutants were changed significantly and decreased by 1000-fold and 2600-fold, respectively. The removal of the terminal positive charge of Lys27 in the K27M and K27E mutants resulted in 20% of the kcat value of wildtype. However, both mutants had a remarkable increase in KATPm value by 241-fold and 552-fold, respectively. Therefore, the positive charge of Lys27 plays an important role on both ATP binding and enzyme catalysis. Interestingly, the results also showed that the mutations that affected ATP binding also had an effect on UMP binding.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009703 Nucleoside-Phosphate Kinase An enzyme that catalyzes reversible reactions of a nucleoside triphosphate, e.g., ATP, with a nucleoside monophosphate, e.g., UMP, to form ADP and UDP. Many nucleoside monophosphates can act as acceptor while many ribo- and deoxyribonucleoside triphosphates can act as donor. EC 2.7.4.4. Nucleoside Monophosphate Kinases,Kinase, Nucleoside-Phosphate,Kinases, Nucleoside Monophosphate,Monophosphate Kinases, Nucleoside,Nucleoside Phosphate Kinase
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014542 Uridine Monophosphate 5'-Uridylic acid. A uracil nucleotide containing one phosphate group esterified to the sugar moiety in the 2', 3' or 5' position. UMP,Uridylic Acid,Uridine 5'-Monophosphate,Uridylic Acids,5'-Monophosphate, Uridine,Acid, Uridylic,Acids, Uridylic,Monophosphate, Uridine,Uridine 5' Monophosphate
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D017124 Conserved Sequence A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences. Conserved Sequences,Sequence, Conserved,Sequences, Conserved
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.

Related Publications

L Zhou, and R Thornburg
December 1999, Protein science : a publication of the Protein Society,
L Zhou, and R Thornburg
August 2004, The Journal of biological chemistry,
L Zhou, and R Thornburg
September 2017, SLAS discovery : advancing life sciences R & D,
L Zhou, and R Thornburg
April 2003, European journal of biochemistry,
L Zhou, and R Thornburg
March 1994, Journal of molecular biology,
L Zhou, and R Thornburg
January 2008, The Journal of biological chemistry,
L Zhou, and R Thornburg
November 2000, Protein science : a publication of the Protein Society,
Copied contents to your clipboard!