Ischemic changes in the canine heart as affected by the dimethyl quaternary analog of propranolol, UM-272 (SC-27761). 1976

B R Lucchesi, and W E Burmeister, and T E Lomas, and G D Abrams

The effects of the dimethyl quarternary analog of propranolol, UM-272, on myocardial infarct volume were studied in the canine heart. Myocardial infarction was produced by occlusion of the left circumflex coronary artery for 60 minutes followed by reperfusion and quantitation of infarct volume 24 hours later. Groups of dogs were either untreated or pretreated with UM-272 with an initial loading dose of 5.0 mg/kg (group A) or 2.5 mg/kg (group B) 30 minutes before occlusion of the left circumflex coronary artery. Both group A and group B animals received additional doses of 2.5 mg/kg of UM-272 every 90 minutes for a period of 6 hours so that the total respective doses were 15 and 12.5 mg/kg. Control animals received comparable volumes of 0.9% sodium chloride solution. All animals were followed throughout the 6-hour procedure with continuous electrocardiographic recordings which were used to assess the effects of acute myocardial ischemia upon disturbances in cardiac rhythm and the effects of drug treatment. Dogs which survived the procedure were given tetracycline i.v. the next day and sacrificed 1 hour later by an overdose of pentobarbital sodium. The hearts were removed and the left ventricle was sliced and examined first under ultraviolet light to localize the ischemic zone by noting the tetracycline fluorescence. The ventricular slices were next incubated in nitro blue tetrazolium which stains normal myocardial tissue, thus allowing one to quantitate the volume of infarcted myocardium by excising and weighing the nonstained and stained muscle separately. The untreated control group had an infarct volume of 23.8 +/- 3.2 g/100 g of left ventricle. The treated animals in groups A and B had respective infarct volumes of 2.3 +/- 0.8 g/100 g (P less than .001) and 7.0 +/- 3.3 g/100 g (P less than .025) of left ventricle. During the acute phase of ischemia and reperfusion, arrhythmias and alterations in the ST-segment, R-wave amplituted and development of pathologic Q-waves were more prominent in the untreated animals and almost totally absent in the treated animals. UM-272 produced a dose-dependent decrease in heart rate as well as a decrease in developed isometric tension. Pretreatment with UM-272 did not prevent the derangement of function in the ischemic zone nor did it permit a return of function upon reperfusion, even though it reduced the degree of cellular damage resulting from 60 minutes of regional ischemia. A possible mechanism for the protective effect of UM-272 may be through its ability to reduce myocardial contractility and heart rate, both of which would reduce myocardial oxygen consumption and thus produce a more favorable balance between myocardial oxygen supply and myocardial oxygen demand.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009203 Myocardial Infarction NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009580 Nitroblue Tetrazolium Colorless to yellow dye that is reducible to blue or black formazan crystals by certain cells; formerly used to distinguish between nonbacterial and bacterial diseases, the latter causing neutrophils to reduce the dye; used to confirm diagnosis of chronic granulomatous disease. Nitro-BT,Nitrotetrazolium Blue,Tetrazolium Nitroblue,Blue, Nitrotetrazolium,Nitroblue, Tetrazolium,Tetrazolium, Nitroblue
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary

Related Publications

B R Lucchesi, and W E Burmeister, and T E Lomas, and G D Abrams
November 1973, The Journal of pharmacology and experimental therapeutics,
B R Lucchesi, and W E Burmeister, and T E Lomas, and G D Abrams
January 1985, Acta cardiologica,
B R Lucchesi, and W E Burmeister, and T E Lomas, and G D Abrams
January 1992, Pharmacological research,
B R Lucchesi, and W E Burmeister, and T E Lomas, and G D Abrams
January 1973, The Journal of pharmacology and experimental therapeutics,
B R Lucchesi, and W E Burmeister, and T E Lomas, and G D Abrams
June 1983, The Indian journal of medical research,
B R Lucchesi, and W E Burmeister, and T E Lomas, and G D Abrams
August 1979, Research communications in chemical pathology and pharmacology,
B R Lucchesi, and W E Burmeister, and T E Lomas, and G D Abrams
March 1980, The Journal of pharmacology and experimental therapeutics,
B R Lucchesi, and W E Burmeister, and T E Lomas, and G D Abrams
January 1983, Pharmacology,
B R Lucchesi, and W E Burmeister, and T E Lomas, and G D Abrams
March 1983, European journal of pharmacology,
Copied contents to your clipboard!