Heat production and chemical change during isometric contraction of rat soleus muscle. 1976

D Gower, and K M Kretzschmar

1. Methods are described whereby the soleus muscle of the rat may be used for the investigation of initial processes in the absence of oxidative recovery. 2. The anaerobic conditions employed had no effect on the concentration of phosphocreatine in resting muscle or the mechanical response during contraction. 3. Muscles were stimulated tetanically for 10 s at 17-18 degrees C. Measurements were made of the heat production and metabolic changes that occurred during a 13 s period following the first stimulus. 4. There was no detectable change in the concentration of ATP. Neither was there detectable activity of adenylate kinase or adenylate deaminase. The changes in the concentration of glycolytic intermediaries were undetectable or very small. 5. The change in the concentration of phosphocreatine was large and amounted to -127 +/- 11-4 mumol/mmol Ct (mean and S.E. of the mean, negative sign indicates break-down, Ct = free creatine + phosphocreatine) which is equivalent to about -2-13 mumol/g wet weight of muscle. The heat production was 6549 +/- 408 mJ/mmol Ct (mean and S.E. of mean) which is equivalent to about 110 mJ/g. 6. About 30% of the observed energy output is unaccounted for by measured metabolic changes. 7. The ratio of heat production (corrected for small amounts of glycolytic activity) to phosphocreatine hydrolysis was -49-7 +/- 5-6 kJ/mol (mean and S.E. of mean), in agreement with previous results using comparable contractions of frog muscle, but different from the enthalpy change associated with phosphocreatine hydrolysis under in vivo conditions (-34 kJ/mol). 8. The results support the notion that the discrepancy between energy output and metabolism is an indication of an unidentified process of substantial energetic significance that is common to a number of species.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000263 Adenylate Kinase An enzyme that catalyzes the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate. EC 2.7.4.3. Myokinase,AMP Kinase,ATP-AMP Phosphotransferase,ATP-AMP Transphosphorylase,Adenylokinase,ATP AMP Phosphotransferase,ATP AMP Transphosphorylase,Kinase, AMP,Kinase, Adenylate,Phosphotransferase, ATP-AMP,Transphosphorylase, ATP-AMP
D000659 AMP Deaminase An enzyme that catalyzes the deamination of AMP to IMP. EC 3.5.4.6. AMP Aminase,Adenylate Deaminase,5'-AMP Deaminase,AMP Aminohydrolase,Myoadenylate Deaminase,5' AMP Deaminase,Aminase, AMP,Aminohydrolase, AMP,Deaminase, 5'-AMP,Deaminase, AMP,Deaminase, Adenylate,Deaminase, Myoadenylate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D Gower, and K M Kretzschmar
October 1988, The American journal of physiology,
D Gower, and K M Kretzschmar
October 1975, The Journal of physiology,
D Gower, and K M Kretzschmar
February 1970, The Journal of physiology,
D Gower, and K M Kretzschmar
August 1993, Journal of muscle research and cell motility,
D Gower, and K M Kretzschmar
January 1987, Acta physiologica Scandinavica,
D Gower, and K M Kretzschmar
March 2011, Anatomical science international,
Copied contents to your clipboard!