Properties of motor units of the frog sartorius muscle. 1976

A R Luff, and U Proske

1. The mechanical properties of single motor units in the sartorius muscle of the frog Litoria aurea were examined during single shock and repetitive stimulation of motor axons. 2. The tetanic tension developed by motor units lay in the range 1-40% of whole muscle tension with two peaks in the distribution, in the range 5-10% and 25-30%. The large units had briefer times-to-peak for the twitch than the small units and were more readily fatigued during prolonged repetitive stimulation. 3. Histological examination of the muscle gave a count of 620 muscle fibres with a diameter range of 28-128 mum. Cholinesterase stained preparations showed that the majority of muscle fibres had several nerve terminals (mean 3, range 1-5). 4. Muscle fibres received their multiple innervation from different axons (polyneuronal) or branches of the same axon (multiterminal). The presence of polyneuronal innervation of muscle fibres was confirmed by a comparison of the tensions when each of a pair of motor units was stimulated alone and when they were stimulated together. The tension excess, or overlap, was up to 60% when expressed in terms of the tension developed by either unit alone. Motor units developing similar amounts of tension tended to show more overlap in their innervation than units with very different tensions. 5. An estimate of the amount of multiterminal innervation gave variable results but could account for up to 60% of a motor unit's tension. No correlation could be detected between the values for multiterminal innervation and any other measured parameter. However, it is argued that because of the limitations of the measurements the existence of a relationship between the extent of multiterminal or polyneuronal innervation and the mechanical properties of the motor unit cannot be excluded.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A R Luff, and U Proske
October 1968, The Japanese journal of physiology,
A R Luff, and U Proske
February 1983, Acta anaesthesiologica Scandinavica,
A R Luff, and U Proske
November 1947, The American journal of physiology,
A R Luff, and U Proske
March 1976, Biochimica et biophysica acta,
A R Luff, and U Proske
June 1951, Nature,
A R Luff, and U Proske
June 1964, The American journal of physiology,
A R Luff, and U Proske
January 1966, The Journal of general physiology,
A R Luff, and U Proske
August 1970, The Tohoku journal of experimental medicine,
A R Luff, and U Proske
December 1979, The Journal of physiology,
A R Luff, and U Proske
February 1980, Arkhiv anatomii, gistologii i embriologii,
Copied contents to your clipboard!