Sex- and stress-steroids interactions and the immune system: evidence for a neuroendocrine-immunological sexual dimorphism. 1998

R C Gaillard, and E Spinedi
Division of Endocrinology, Diabetology and Metabolism, University Hospital (CHUV), Lausanne, Switzerland.

It is well established that sexual dimorphism exits within the immune system. Females have higher levels of immunoglobulins, greater antibody response to antigens, and higher incidence of autoimmune diseases, such as systemic lupus erythematosus, Grave's disease, and Hashimoto thyroiditis than males. Spontaneous autoimmune syndromes in mice are more prevalent and of greater severity in females compared with males, and the course of the disease can be modulated by changes in levels of gonadal steroids. A sexual dimorphism is also present in the pituitary-adrenal function: females have higher corticosterone levels and higher corticosteroidogenesis. In the context of the immune-neuroendocrine interactions, we investigated the effects of gonadectomy and sex hormone therapy on endotoxin-stimulated hypothalamo-pituitary-adrenal axis. Whereas endotoxin-induced corticosterone release is invariable throughout the different stages of the oestrus cycle, gonadectomy in both male and female mice leads to enhanced adrenal and immune responses to endotoxin. Interestingly, these enhanced adrenal and immune responses can be completely reversed by testosterone treatment regardless of the sex of the mice. Studies performed over development confirm the role of endogenous testosterone in modulating the endotoxin-induced corticosterone secretion. Indeed, corticosterone response to endotoxin is maximal before puberty when endogenous testosterone levels are low and declines in postpubertal and adult mice. In conclusion, all these data support a sex steroid hormone basis for a neuroendocrine-immunologic sexual dimorphism.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D004731 Endotoxins Toxins closely associated with the living cytoplasm or cell wall of certain microorganisms, which do not readily diffuse into the culture medium, but are released upon lysis of the cells. Endotoxin
D005260 Female Females

Related Publications

R C Gaillard, and E Spinedi
January 2006, Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion,
R C Gaillard, and E Spinedi
June 1998, The Psychiatric clinics of North America,
R C Gaillard, and E Spinedi
January 1995, Ciba Foundation symposium,
R C Gaillard, and E Spinedi
January 1989, Zentralblatt fur Gynakologie,
R C Gaillard, and E Spinedi
January 2009, The Journal of steroid biochemistry and molecular biology,
R C Gaillard, and E Spinedi
July 1980, Endokrinologie,
R C Gaillard, and E Spinedi
February 2020, Nature communications,
R C Gaillard, and E Spinedi
January 2008, Cellular immunology,
R C Gaillard, and E Spinedi
January 1994, Vojnosanitetski pregled,
R C Gaillard, and E Spinedi
January 1995, Annual review of immunology,
Copied contents to your clipboard!