Escherichia coli dnaA gene function and bacteriophage lambda replication. 1998

A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
Department of Molecular Biology, University of Gdańsk, Poland.

Allele specificity of the Escherichia coli dnaA gene function in the replication of plasmids derived from bacteriophage lambda has been demonstrated previously. Here, using a series of dnaA temperature-sensitive mutants, we investigated dnaA allele specificity of the replication of phages lambda P+ and lambda Pts 1 pi A66. We found that phage lambda P+ produces its progeny efficiently at 43 degrees C irrespective of the dnaA allele, whereas lambda Pts 1 pi A66, which is unable to develop lytically in the dnaA+ host at this temperature, can replicate with different efficiency in certain dnaA mutants. Since the main role of DnaA in lambda development seems to be stimulation of transcription from the pR promoter, we measured the activity of this promoter (using a pR-lacZ fusion) and the abundance of pR-derived transcripts (by Northern blotting analysis) in dnaA+ host and dnaA(ts) mutants at 30 and 43 degrees C. We found significant differences in the activity of pR in various dnaA(ts) mutants at 30 degrees C, which indicate different levels of stimulation of this promoter by products of particular dnaA alleles at permissive temperature. Differential levels of DnaA-mediated stimulation of pR in various dnaA(ts) mutants were also found at 43 degrees C. Stimulation of the pR promoter by DnaA is necessary for both efficient production of the lambda replication proteins, O and P, and effective transcriptional activation of ori lambda. The differences in the efficiency of pR activation observed in dnaA mutants at 30 and 43 degrees C can explain the mechanisms of allele specificity of dnaA gene function in the replication of bacteriophage lambda and plasmids derived from this phage.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
April 1999, Genetics,
A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
October 1998, Molecular & general genetics : MGG,
A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
October 1996, Molecular & general genetics : MGG,
A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
November 1987, Journal of molecular biology,
A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
April 1968, Journal of virology,
A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
June 2003, The Journal of biological chemistry,
A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
April 1997, Molecules and cells,
A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
January 2005, Journal of biochemistry and molecular biology,
A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
June 1977, Journal of molecular biology,
A Szalewska-Pałasz, and E Lemieszek, and A Pankiewicz, and A Wegrzyn, and D R Helinski, and G Wegrzyn
October 1978, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!