Prostanoid receptors of the EP3 subtype mediate inhibition of evoked [3H]acetylcholine release from isolated human bronchi. 1998

T Reinheimer, and E Harnack, and K Racke, and I Wessler
Pharmakologisches Institut, Universität Mainz, Germany.

1. The release of neuronal [3H]acetylcholine (ACh) from isolated human bronchi after labelling with [3H]choline was measured to investigate the effects of prostanoids. 2. A first period of electrical field stimulation (S1) caused a [3H]ACh release of 320+/-70 and 200+/-40 Becquerel (Bq) g(-1) in epithelium-denuded and epithelium-containing bronchi respectively (P>0.05). Subsequent periods of electrical stimulation (Sn, n=2, 3, and 4) released less [3H]ACh, i.e. decreasing Sn/ S1 values were obtained (0.76+/-0.09, 0.68+/-0.07 and 0.40+/-0.04, respectively). 3. Cumulative concentrations (1-1000 nM) of EP-receptor agonists like prostaglandin E2, nocloprost, and sulprostone (EP1 and EP3 selective) inhibited evoked [3H]ACh release in a concentration dependent manner with IC50 values between 4- 14 nM and maximal inhibition of about 70%. 4. The inhibition of evoked [3H]ACh release by prostaglandin E2, nocloprost and sulprostone was not affected by the DP-, EP1- and EP2-receptor antagonist AH6809 at a concentration of 3 microM, i.e. a 3-30 times greater concentration than its affinity (pA2 values) at the respective receptors. 5. Circaprost (IP-receptor agonist; 1-100 nM), iloprost (IP- and EP1-receptor agonist; 10-1000 nM) and U-46619 (TP-receptor agonist; 100-1000 nM) did not significantly affect [3H]ACh release. 6. Blockade of cyclooxygenase by 3 microM indomethacin did not significantly modulate evoked [3H]ACh release in epithelium-containing and epithelium-denuded bronchi. Likewise, the combined cyclo- and lipoxygenase inhibitor BW-755C (20 microM) did not affect evoked [3H]ACh release. 7. In conclusion, applied prostanoids appear to inhibit [3H]ACh release in epithelium-denuded human bronchi under the present in vitro conditions, most likely via prejunctional prostanoid receptors of the EP3 subtype.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000894 Anti-Inflammatory Agents, Non-Steroidal Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects. Analgesics, Anti-Inflammatory,Aspirin-Like Agent,Aspirin-Like Agents,NSAID,Non-Steroidal Anti-Inflammatory Agent,Non-Steroidal Anti-Inflammatory Agents,Nonsteroidal Anti-Inflammatory Agent,Anti Inflammatory Agents, Nonsteroidal,Antiinflammatory Agents, Non Steroidal,Antiinflammatory Agents, Nonsteroidal,NSAIDs,Nonsteroidal Anti-Inflammatory Agents,Agent, Aspirin-Like,Agent, Non-Steroidal Anti-Inflammatory,Agent, Nonsteroidal Anti-Inflammatory,Anti-Inflammatory Agent, Non-Steroidal,Anti-Inflammatory Agent, Nonsteroidal,Anti-Inflammatory Analgesics,Aspirin Like Agent,Aspirin Like Agents,Non Steroidal Anti Inflammatory Agent,Non Steroidal Anti Inflammatory Agents,Nonsteroidal Anti Inflammatory Agent,Nonsteroidal Anti Inflammatory Agents,Nonsteroidal Antiinflammatory Agents
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3
D015772 4,5-Dihydro-1-(3-(trifluoromethyl)phenyl)-1H-pyrazol-3-amine A dual inhibitor of both cyclooxygenase and lipoxygenase pathways. It exerts an anti-inflammatory effect by inhibiting the formation of prostaglandins and leukotrienes. The drug also enhances pulmonary hypoxic vasoconstriction and has a protective effect after myocardial ischemia. BW-755C,BW755C,BW 755C
D018078 Receptors, Prostaglandin E Cell surface receptors which bind prostaglandins with a high affinity and trigger intracellular changes which influence the behavior of cells. Prostaglandin E receptors prefer prostaglandin E2 to other endogenous prostaglandins. They are subdivided into EP1, EP2, and EP3 types based on their effects and their pharmacology. PGE Receptors,PGE2 Receptors,Prostaglandin E Receptors,PGE Receptor,Prostaglandin E Receptor,E Receptor, Prostaglandin,E Receptors, Prostaglandin,Receptor, Prostaglandin E
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

T Reinheimer, and E Harnack, and K Racke, and I Wessler
January 2003, European journal of pharmacology,
T Reinheimer, and E Harnack, and K Racke, and I Wessler
October 1992, British journal of pharmacology,
T Reinheimer, and E Harnack, and K Racke, and I Wessler
August 1997, American journal of respiratory and critical care medicine,
T Reinheimer, and E Harnack, and K Racke, and I Wessler
March 1987, Pharmacology & toxicology,
T Reinheimer, and E Harnack, and K Racke, and I Wessler
January 1995, Naunyn-Schmiedeberg's archives of pharmacology,
T Reinheimer, and E Harnack, and K Racke, and I Wessler
May 2007, Life sciences,
T Reinheimer, and E Harnack, and K Racke, and I Wessler
April 1995, American journal of respiratory and critical care medicine,
T Reinheimer, and E Harnack, and K Racke, and I Wessler
March 1991, British journal of pharmacology,
Copied contents to your clipboard!