Use of intrinsic modes in biology: examples of indicial response of pulmonary blood pressure to +/- step hypoxia. 1998

W Huang, and Z Shen, and N E Huang, and Y C Fung
Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA.

Recently, a new method to analyze biological nonstationary stochastic variables has been presented. The method is especially suitable to analyze the variation of one biological variable with respect to changes of another variable. Here, it is illustrated by the change of the pulmonary blood pressure in response to a step change of oxygen concentration in the gas that an animal breathes. The pressure signal is resolved into the sum of a set of oscillatory intrinsic mode functions, which have zero "local mean," and a final nonoscillatory mode. With this device, we obtain a set of "mean trends," each of which represents a "mean" in a definitive sense, and together they represent the mean trend systematically with different degrees of oscillatory content. Correspondingly, the oscillatory content of the signal about any mean trend can be represented by a set of partial sums of intrinsic mode functions. When the concept of "indicial response function" is used to describe the change of one variable in response to a step change of another variable, we now have a set of indicial response functions of the mean trends and another set of indicial response functions to describe the energy or intensity of oscillations about each mean trend. Each of these can be represented by an analytic function whose coefficients can be determined by a least-squares curve-fitting procedure. In this way, experimental results are stated sharply by analytic functions.

UI MeSH Term Description Entries
D008297 Male Males
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model

Related Publications

W Huang, and Z Shen, and N E Huang, and Y C Fung
April 1996, The American journal of physiology,
W Huang, and Z Shen, and N E Huang, and Y C Fung
January 1997, American journal of respiratory and critical care medicine,
W Huang, and Z Shen, and N E Huang, and Y C Fung
September 2020, Respiratory care,
W Huang, and Z Shen, and N E Huang, and Y C Fung
December 2003, American journal of hypertension,
W Huang, and Z Shen, and N E Huang, and Y C Fung
October 2005, Hypertension (Dallas, Tex. : 1979),
W Huang, and Z Shen, and N E Huang, and Y C Fung
August 1999, Hypertension (Dallas, Tex. : 1979),
W Huang, and Z Shen, and N E Huang, and Y C Fung
May 1954, Circulation,
W Huang, and Z Shen, and N E Huang, and Y C Fung
January 2021, Frontiers in cardiovascular medicine,
W Huang, and Z Shen, and N E Huang, and Y C Fung
February 2002, Journal of applied physiology (Bethesda, Md. : 1985),
W Huang, and Z Shen, and N E Huang, and Y C Fung
October 1989, Journal of the American Veterinary Medical Association,
Copied contents to your clipboard!