Organellar H(+)-ATPase--site directed mutagenesis and suppressor mutants. 1998

N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
Department of Biochemistry, Tel Aviv University, Israel.

The oligomeric state of the proteolipid subunit of V-ATPase from Saccharomyces cerevisiae was studied using hemagglutinine (HA) epitope-tag. Like with several other highly hydrophobic proteins, the proteolipid tends to aggregate in the presence of sodium dodecyl sulfate (SDS). We observed that the oligomeric state of the proteolipid predetermined its tendency for aggregation. Recently we discovered a novel V-ATPase subunit, denoted as M16 for the mammalian enzyme and Vma10p for the yeast enzyme, that is homologous to the b subunit of the membrane sector of F-ATPases. It is assumed that the structure of Vma10p resembles that of subunit b which is basically two anti parallel helices. We mutated the VMA10 gene to change charges on the protein in helices and to introduce helix braking instead of helix forming amino acids. The functionality of the mutated VMA10 was analyzed by growing the transformed yeast cells on a YPD medium buffered at pH 7.5. Two inactive site-directed mutants we used for obtaining second-site suppressors. Mutagenesis with EMS was utilized to get an equal chance of obtaining intra and extragene second-site suppressors. To our surprise the number of colonies that grew at pH 7.5 was too large to account for mutations in V-ATPase subunits. Apparently, mutations that are situated in genes that do not encode V-ATPase subunits could reverse the phenotype of V-ATPase null mutations resulting in growth at pH 7.5. The large number of colonies that grew at pH 7.5 after EMS treatment suggest a big complex with multiple subunits as a target for mutagenesis. The observed phenomenon is very intriguing. If the responsible protein complex is identified, it may shed light on an important and novel cell biology subject.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D015388 Organelles Specific particles of membrane-bound organized living substances present in eukaryotic cells, such as the MITOCHONDRIA; the GOLGI APPARATUS; ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Organelle
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
March 2001, Archives of biochemistry and biophysics,
N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
January 1996, The Journal of biological chemistry,
N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
September 1996, The Journal of biological chemistry,
N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
December 1995, The Journal of biological chemistry,
N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
March 2003, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
December 1989, Biochemical Society transactions,
N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
February 1996, The Journal of biological chemistry,
N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
October 1994, The Journal of biological chemistry,
N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
May 1997, The Journal of biological chemistry,
N Perzov, and L Spekova, and F Supek, and H Nelson, and N Nelson
January 1992, Acta physiologica Scandinavica. Supplementum,
Copied contents to your clipboard!