The calcium pump of the plasma membrane: membrane targeting, calcium binding sites, tissue-specific isoform expression. 1998

D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

The two Ca2+ pumps of higher eucaryotes are strictly targeted to different membrane systems: the plasma membrane (PMCA) and the sarco(endo)plasmic reticulum (SERCA). Chimeric constructs of the two pumps expressed in COS-7 cells have revealed a strong signal for endoplasmic reticulum retention in the N-terminal cytosolic portion of the SERCA pump: the signal is contained in a stretch of 28 amino acids that follows the N-terminus. A second, but masked, endoplasmic reticulum retention signal is contained in a cytosolic C-terminal sequence immediately preceding the calmodulin-binding domain of the Ca2+ pump. Selective mutations on the SERCA pump have led to the conclusion that 5 conserved residue membrane domains (TM)4, 5, and 6 form the Ca2+ channel through the pump protein. A comparative sequence inspection has failed to reveal any of these residues in TM5 of the PMCA pump. Mutation of the conserved residue in TM4 and of two in TM6 abolished the ability of the pump to form the Ca(2+)-dependent phosphoenzyme. However, one of the mutations (N979, TM6) also caused retention of the PMCA pump in the reticulum, suggesting structural alterations. Of the four basic isoforms of the pump, two (1, 4) are ubiquitously expressed, two (2, 3) are essentially brain specific. Isoform 2 has the highest calmodulin affinity. Primary cultures of cerebellar granule cells from newborn rats did not express isoforms 2 and 3 at plating time. Incubation of the cells in depolarizing concentrations of KCl, which promote Ca2+ influx, promoted the expression of isoforms 2 and 3, and of a brain specific spliced variant of isoform 1. Incubation of the cells in L-type Ca2+ channel blockers abolished the upregulation of the pump genes.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
November 1998, The Journal of biological chemistry,
D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
March 1994, Journal of neurobiology,
D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
February 2005, Biochemistry,
D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
December 2002, Cellular signalling,
D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
February 1996, The Journal of biological chemistry,
D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
May 1996, The Biochemical journal,
D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
April 1996, Bioscience reports,
D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
September 1993, The Journal of biological chemistry,
D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
June 2017, Physiological reports,
D Guerini, and E Garcia-Martin, and A Zecca, and F Guidi, and E Carafoli
January 2002, Cellular & molecular biology letters,
Copied contents to your clipboard!