Posttranslational modification of glycosylphosphatidylinositol (GPI)-specific phospholipase D and its activity in cleavage of GPI anchors. 1998

H Tsujioka, and Y Misumi, and N Takami, and Y Ikehara, and H Tujioka
Department of Biochemistry, Fukuoka University School of Medicine, Fukuoka, Jonan-ku, 814-0180, Japan.

Human glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) was exogenously expressed in mammalian CHO cells and in insect H5 cells. GPI-PLD was initially synthesized as a 105-kDa form and then secreted as a mature 115-kDa form from the CHO cells, whereas it was secreted as an immature 98-kDa form from the H5 cells. The difference of the molecular forms was caused by its oligosaccharide processing in the two cell lines. These forms showed a different reactivity to anti-C-terminal peptide of GPI-PLD; the 105-kDa and 98-kDa forms were directly recognized by the antibodies, whereas the 115-kDa form was immunoreactive only after being denatured. In an in vitro assay, the 98-kDa form but not the 115-kDa form was able to release a significant amount of GPI-anchored proteins from intact membranes, although the two forms had the same GPI-anchor cleavage activity in the presence of detergents. In addition, a GPI-anchored protein, when coexpressed in CHO cells, was intracellularly cleaved by GPI-PLD in the secretory pathway. Taken together, these results suggest that GPI-PLD undergoes a conformational change by posttranslational modification, which affects its immunoreactive and enzymatic properties.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010739 Phospholipase D An enzyme found mostly in plant tissue. It hydrolyzes glycerophosphatidates with the formation of a phosphatidic acid and a nitrogenous base such as choline. This enzyme also catalyzes transphosphatidylation reactions. EC 3.1.4.4. Lecithinase D,Phosphatidylcholine Phosphohydrolase
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

H Tsujioka, and Y Misumi, and N Takami, and Y Ikehara, and H Tujioka
September 1991, Cell biology international reports,
H Tsujioka, and Y Misumi, and N Takami, and Y Ikehara, and H Tujioka
March 2004, The Biochemical journal,
H Tsujioka, and Y Misumi, and N Takami, and Y Ikehara, and H Tujioka
January 1991, Methods in enzymology,
H Tsujioka, and Y Misumi, and N Takami, and Y Ikehara, and H Tujioka
October 1999, Archives of biochemistry and biophysics,
H Tsujioka, and Y Misumi, and N Takami, and Y Ikehara, and H Tujioka
January 2012, International journal of clinical and experimental medicine,
H Tsujioka, and Y Misumi, and N Takami, and Y Ikehara, and H Tujioka
January 1996, Anticancer research,
H Tsujioka, and Y Misumi, and N Takami, and Y Ikehara, and H Tujioka
January 2002, The Biochemical journal,
H Tsujioka, and Y Misumi, and N Takami, and Y Ikehara, and H Tujioka
June 2013, Current organic synthesis,
H Tsujioka, and Y Misumi, and N Takami, and Y Ikehara, and H Tujioka
February 2014, Organic & biomolecular chemistry,
Copied contents to your clipboard!