A novel sporulation-control gene (spo0M) of Bacillus subtilis with a sigmaH-regulated promoter. 1998

W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
National Food Research Institute, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.

A novel sporulation-control gene (spo0M) of Bacillus subtilis was cloned, sequenced and analyzed. The spo0M gene is located at the end of large tRNA gene clusters including rrnD and codes for a 257-amino-acid protein with a calculated size of 29.6kDa. The protein Spo0M has a strong negative charge (calculated pI=4.3) and shows no significant sequence homology to any known proteins. Gene disruption experiments revealed that spo0M is not essential for cell viability, but its disruption results in considerable impairments (decreasing by 20- to 100-fold) in sporulation. The morphological stage blocked in sporulation was stage 0 as observed by electron microscopy, and expression analysis using spo0Aps-bgaB fusion revealed an impaired gene expression of spo0A in the spo0M mutant. In contrast, spo0M disruption had no effect on antibiotic productivity. Propagation of the spo0M gene in wild-type cells using a high-copy-number plasmid also impaired sporulation, indicating that overproduction of Spo0M exerts certain negative effects on sporulation. spo0M gene expression is controlled by sigmaH, as demonstrated: (1) by monitoring expression of a bgaB transcriptional fusion integrated into the amyE locus on the chromosome of the wild-type or spo0H mutant cells, and (2) by in-vitro transcription of spo0M gene with EsigmaH.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto

Related Publications

W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
December 2015, Acta crystallographica. Section F, Structural biology communications,
W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
February 2012, Research in microbiology,
W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
February 2001, Molecular & general genetics : MGG,
W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
July 1984, Journal of molecular biology,
W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
September 1981, Cell,
W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
September 1998, Journal of bacteriology,
W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
January 2017, PloS one,
W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
July 1998, Journal of biochemistry,
W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
December 1998, Journal of bacteriology,
W D Han, and S Kawamoto, and Y Hosoya, and M Fujita, and Y Sadaie, and K Suzuki, and Y Ohashi, and F Kawamura, and K Ochi
April 1990, Journal of bacteriology,
Copied contents to your clipboard!