Brain vasopressin is involved in stress-induced suppression of immune function in the rat. 1998

T Shibasaki, and M Hotta, and H Sugihara, and I Wakabayashi
Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.

The possibility that vasopressin (VP) is involved in stress-induced suppression of immune function was examined in rats. Intermittent electrical footshock for 60 min suppressed the proliferative response of splenic T cells to the mitogen concanavalin A as well as natural killer (NK) cytotoxicity, and the former change was partially, and the latter was completely, blocked by intracerebroventricular (i.c.v.) preadministration of a V1 receptor antagonist. The footshock-induced suppression of the T cell proliferative response was completely abolished by coadministration of a corticotropin-releasing hormone (CRH) receptor antagonist and the V1 receptor antagonist. The i.c.v. administration of VP suppressed the proliferative response of splenic T cells and NK cytotoxicity in an adrenal-independent manner. These effects were completely reversed by i.c.v. preadministration of the V1 receptor antagonist. These results suggest that brain VP, in conjunction with CRH, suppresses immune function through the V1 receptor in rats under stress.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008297 Male Males
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002552 Cerebral Ventricles Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE). Foramen of Monro,Cerebral Ventricular System,Cerebral Ventricle,Cerebral Ventricular Systems,Monro Foramen,System, Cerebral Ventricular,Systems, Cerebral Ventricular,Ventricle, Cerebral,Ventricles, Cerebral,Ventricular System, Cerebral,Ventricular Systems, Cerebral
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004597 Electroshock Induction of a stress reaction in experimental subjects by means of an electrical shock; applies to either convulsive or non-convulsive states. Electroconvulsive Shock,Electroconvulsive Shocks,Electroshocks,Shock, Electroconvulsive,Shocks, Electroconvulsive

Related Publications

T Shibasaki, and M Hotta, and H Sugihara, and I Wakabayashi
October 2007, Toxicology and applied pharmacology,
T Shibasaki, and M Hotta, and H Sugihara, and I Wakabayashi
May 2007, Journal of neurochemistry,
T Shibasaki, and M Hotta, and H Sugihara, and I Wakabayashi
July 2012, Cytokine,
T Shibasaki, and M Hotta, and H Sugihara, and I Wakabayashi
September 1999, Journal of neuroendocrinology,
T Shibasaki, and M Hotta, and H Sugihara, and I Wakabayashi
May 2010, Acta histochemica,
T Shibasaki, and M Hotta, and H Sugihara, and I Wakabayashi
October 1977, Science (New York, N.Y.),
T Shibasaki, and M Hotta, and H Sugihara, and I Wakabayashi
March 2017, Hormones and behavior,
T Shibasaki, and M Hotta, and H Sugihara, and I Wakabayashi
September 2019, Endocrinology,
Copied contents to your clipboard!