Specific interactions between vestigial and scalloped are required to promote wing tissue proliferation in Drosophila melanogaster. 1998

S Paumard-Rigal, and A Zider, and P Vaudin, and J Silber
Institut Jacques Monod, L.G.Q.M., 2, Place Jussieu, Tour 43, F-75251 Paris cedex 05, France.

The two genes vestigial (vg) and scalloped (sd) are required for wing development in Drosophila melanogaster. They present similar patterns of expression in second and third instar wing discs and similar wing mutant phenotypes. vg encodes a nuclear protein without any recognized nucleic acid-binding motif. Sd is a transcription factor homologous to the human TEF-1 factor whose promoter activity depends on cell-specific cofactors. We postulate that Vg could be a cofactor of Sd in the wing morphogenetic process and that, together, they could constitute a functional transcription complex. We investigated genetic interactions between the two genes. We show here that vg and sd co-operate in vivo in a manner dependent on the structure of the Vg protein. We ectopically expressed vg in the patch (ptc) domains. We show evidence that wing-like outgrowths induced by ectopic expression of vg are severely reduced in vg or sd mutant backgrounds. Accordingly, we demonstrate that ptc-GAL4-driven expression of vg induces both expressions of the endogenous vg and sd genes and that the two Vg and Sd proteins have to be produced together to promote wing proliferation. Furthermore, we show an interaction between the two proteins by double hybrid experiments in yeast. Our results therefore support the hypothesis that Sd and Vg directly interact in vivo to form a complex regulating the proliferation of wing tissue.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014921 Wings, Animal Movable feathered or membranous paired appendages by means of which certain animals such as birds, bats, or insects are able to fly. Animal Wing,Animal Wings,Wing, Animal
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D019076 Transgenes Genes that are introduced into an organism using GENE TRANSFER TECHNIQUES. Recombinant Transgenes,Recombinant Transgene,Transgene,Transgene, Recombinant,Transgenes, Recombinant
D020133 Reverse Transcriptase Polymerase Chain Reaction A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols. Polymerase Chain Reaction, Reverse Transcriptase,Reverse Transcriptase PCR,PCR, Reverse Transcriptase,Transcriptase PCR, Reverse
D029721 Drosophila Proteins Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development. Drosophila melanogaster Proteins,Proteins, Drosophila,Proteins, Drosophila melanogaster,melanogaster Proteins, Drosophila

Related Publications

S Paumard-Rigal, and A Zider, and P Vaudin, and J Silber
December 1998, Genes & development,
S Paumard-Rigal, and A Zider, and P Vaudin, and J Silber
April 1999, Current biology : CB,
S Paumard-Rigal, and A Zider, and P Vaudin, and J Silber
August 2006, Genes to cells : devoted to molecular & cellular mechanisms,
S Paumard-Rigal, and A Zider, and P Vaudin, and J Silber
May 2003, Mechanisms of development,
S Paumard-Rigal, and A Zider, and P Vaudin, and J Silber
December 1998, Genes & development,
S Paumard-Rigal, and A Zider, and P Vaudin, and J Silber
December 2000, Developmental biology,
S Paumard-Rigal, and A Zider, and P Vaudin, and J Silber
January 1999, Development genes and evolution,
S Paumard-Rigal, and A Zider, and P Vaudin, and J Silber
January 2009, Molecular biology of the cell,
S Paumard-Rigal, and A Zider, and P Vaudin, and J Silber
July 1999, BioEssays : news and reviews in molecular, cellular and developmental biology,
Copied contents to your clipboard!