Detection of oxidative DNA damage to ischemic reperfused rat hearts by 8-hydroxydeoxyguanosine formation. 1998

G A Cordis, and G Maulik, and D Bagchi, and W Riedel, and D K Das
University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA.

Reactive oxygen species that are generated in the ischemic heart upon reperfusion, play a significant role in the pathogenesis of reperfusion injury. Although DNA is a well known target for free radical attack, little attention has been paid to the injury of DNA molecules associated with ischemia and reperfusion. In this study, the formation of 8-hydroxydeoxyguanosine (8-OHDG), a product of hydroxyl radical (OH.)-DNA interaction, was monitored in the post-ischemic myocardium. A simple high performance liquid chromatography (HPLC), with uv detection, detected pmol levels of 8-OHDG in the pre-ischemic heart which increased steadily and progressively as a function of reperfusion time. A similar rise in 8-OHDG was noticed when isolated hearts were perfused with a OH. -generating system. Corroborating with the increased 8-OHDG formation, increased amount of creatine kinase was released from the coronary effluent indicating increased tissue injury. The formation of 8-OHDG was completely blocked when hearts were preperfused with oxygen-free-radical scavenger, 1,3-dimethyl-2-thiourea (DMTU) which also significantly reduced the appearance of CK in the coronary effluent, suggesting that oxidative DNA damage play a role in the pathophysiology of ischemic reperfusion injury.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D000080242 8-Hydroxy-2'-Deoxyguanosine Common oxidized form of deoxyguanosine in which C-8 position of guanine base has a carbonyl group. 2'-Deoxy-7,8-Dihydro-8-Oxoguanosine,2'-Deoxy-8-Hydroxyguanosine,2'-Deoxy-8-Oxo-7,8-Dihydroguanosine,2'-Deoxy-8-Oxoguanosine,7,8-Dihydro-8-Oxo-2'-Deoxyguanosine,7-Hydro-8-Oxodeoxyguanosine,8-Hydroxydeoxyguanosine,8-Oxo-2'-Deoxyguanosine,8-Oxo-7,8-Dihydro-2'-Deoxyguanosine,8-Oxo-7,8-Dihydrodeoxyguanosine,8-Oxo-7-Hydrodeoxyguanosine,8-Oxo-Deoxyguanosine,8OHdG,8-OH-dG,8-oxo-dG,8-oxo-dGuo,8-oxodG,8-oxodGuo,2' Deoxy 7,8 Dihydro 8 Oxoguanosine,2' Deoxy 8 Hydroxyguanosine,2' Deoxy 8 Oxo 7,8 Dihydroguanosine,2' Deoxy 8 Oxoguanosine,7 Hydro 8 Oxodeoxyguanosine,7,8 Dihydro 8 Oxo 2' Deoxyguanosine,8 Hydroxy 2' Deoxyguanosine,8 Hydroxydeoxyguanosine,8 Oxo 2' Deoxyguanosine,8 Oxo 7 Hydrodeoxyguanosine,8 Oxo 7,8 Dihydro 2' Deoxyguanosine,8 Oxo 7,8 Dihydrodeoxyguanosine,8 Oxo Deoxyguanosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune
D015428 Myocardial Reperfusion Injury Damage to the MYOCARDIUM resulting from MYOCARDIAL REPERFUSION (restoration of blood flow to ischemic areas of the HEART.) Reperfusion takes place when there is spontaneous thrombolysis, THROMBOLYTIC THERAPY, collateral flow from other coronary vascular beds, or reversal of vasospasm. Reperfusion Injury, Myocardial,Injury, Myocardial Reperfusion,Myocardial Ischemic Reperfusion Injury,Injuries, Myocardial Reperfusion,Myocardial Reperfusion Injuries,Reperfusion Injuries, Myocardial
D017202 Myocardial Ischemia A disorder of cardiac function caused by insufficient blood flow to the muscle tissue of the heart. The decreased blood flow may be due to narrowing of the coronary arteries (CORONARY ARTERY DISEASE), to obstruction by a thrombus (CORONARY THROMBOSIS), or less commonly, to diffuse narrowing of arterioles and other small vessels within the heart. Severe interruption of the blood supply to the myocardial tissue may result in necrosis of cardiac muscle (MYOCARDIAL INFARCTION). Heart Disease, Ischemic,Ischemia, Myocardial,Ischemic Heart Disease,Disease, Ischemic Heart,Diseases, Ischemic Heart,Heart Diseases, Ischemic,Ischemias, Myocardial,Ischemic Heart Diseases,Myocardial Ischemias

Related Publications

G A Cordis, and G Maulik, and D Bagchi, and W Riedel, and D K Das
December 1990, Cardioscience,
G A Cordis, and G Maulik, and D Bagchi, and W Riedel, and D K Das
January 1999, Methods in enzymology,
G A Cordis, and G Maulik, and D Bagchi, and W Riedel, and D K Das
June 1994, Cancer research,
G A Cordis, and G Maulik, and D Bagchi, and W Riedel, and D K Das
January 1993, Journal of toxicology and environmental health,
G A Cordis, and G Maulik, and D Bagchi, and W Riedel, and D K Das
November 2001, Journal of hepatology,
G A Cordis, and G Maulik, and D Bagchi, and W Riedel, and D K Das
January 2020, Journal of oral and maxillofacial pathology : JOMFP,
G A Cordis, and G Maulik, and D Bagchi, and W Riedel, and D K Das
June 2002, Histopathology,
G A Cordis, and G Maulik, and D Bagchi, and W Riedel, and D K Das
October 2017, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
G A Cordis, and G Maulik, and D Bagchi, and W Riedel, and D K Das
January 1993, IARC scientific publications,
Copied contents to your clipboard!