Purification and characterization of a regiospecific lipase from Aspergillus terreus. 1998

R P Yadav, and R K Saxena, and R Gupta, and W S Davidson
Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.

Aspergillus terreus lipase was purified to homogeneity with 18.0% yield. The specific activity of the enzyme increased from 20.80 to 250 U/mg of protein. Ion exchange on Q-Sepharose was highly effective in the purification process. The molecular mass of the purified enzyme was 41+/-1 kDa as determined by SDS/PAGE. The purified lipase showed excellent temperature tolerance (15-90 degreesC) and was highly thermostable, retaining 100% activity at 60 degreesC for 24 h. It showed good pH tolerance (3.0-12.0) and was stable over a pH range of 4.0-10.0 for 24 h. The activity of the enzyme was inhibited by ionic detergents, whereas non-ionic detergents stimulated enzyme activity. Mg2+ and Ca2+ ions stimulated lipase activity, whereas Co2+, Cu2+, Ni2+ and Fe3+ ions caused inhibition. The enzyme was unaffected by the metal chelator EDTA or by 2-mercaptoethanol and potassium ferrocyanide. At a concentration of 100 microM, 3,4-dichloroisocoumarin caused weak inhibition with 40% loss of activity, but diethyl p-nitrophenyl phosphate at the same concentration strongly inhibited enzyme activity (98.12% loss of activity), confirming that the A. terreus lipase is a serine hydrolase. The lipase was highly active on pig fat (151% relative activity) and groundnut oil (103% relative activity) and least active on kusum oil (18% relative activity). Extensive dialysis did not affect enzyme activity up to 168 h, suggesting the absence of any dialysable cofactor in the enzyme. The A. terreus lipase retained significant activity on freeze-drying and had a shelf-life of more than 6 months at room temperature. The A. terreus lipase exhibited 1,3-regiospecificity and was stable in various organic solvents.

UI MeSH Term Description Entries
D008049 Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3. Triacylglycerol Lipase,Tributyrinase,Triglyceride Lipase,Acid Lipase,Acid Lipase A,Acid Lipase B,Acid Lipase I,Acid Lipase II,Exolipase,Monoester Lipase,Triacylglycerol Hydrolase,Triglyceridase,Triolean Hydrolase,Hydrolase, Triacylglycerol,Hydrolase, Triolean,Lipase A, Acid,Lipase B, Acid,Lipase I, Acid,Lipase II, Acid,Lipase, Acid,Lipase, Monoester,Lipase, Triglyceride
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002412 Cations Positively charged atoms, radicals or groups of atoms which travel to the cathode or negative pole during electrolysis. Cation
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D001230 Aspergillus A genus of mitosporic fungi containing about 100 species and eleven different teleomorphs in the family Trichocomaceae.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

R P Yadav, and R K Saxena, and R Gupta, and W S Davidson
January 2014, Biotechnology and applied biochemistry,
R P Yadav, and R K Saxena, and R Gupta, and W S Davidson
July 1995, Bioscience, biotechnology, and biochemistry,
R P Yadav, and R K Saxena, and R Gupta, and W S Davidson
February 2009, Applied biochemistry and biotechnology,
R P Yadav, and R K Saxena, and R Gupta, and W S Davidson
February 2015, 3 Biotech,
R P Yadav, and R K Saxena, and R Gupta, and W S Davidson
January 2007, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
R P Yadav, and R K Saxena, and R Gupta, and W S Davidson
April 1998, Bioscience, biotechnology, and biochemistry,
R P Yadav, and R K Saxena, and R Gupta, and W S Davidson
January 2013, Biotechnology progress,
R P Yadav, and R K Saxena, and R Gupta, and W S Davidson
January 2016, Preparative biochemistry & biotechnology,
R P Yadav, and R K Saxena, and R Gupta, and W S Davidson
January 2002, Journal of bioscience and bioengineering,
Copied contents to your clipboard!