Denaturing gradient gel electrophoresis: a rapid method for differentiating BoLA-DRB3 alleles. 1998

B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison 53706, USA.

The products of the BoLA-DRB3 locus are important molecules in the bovine immune response. Several techniques have been used to study and define this locus but they are generally time consuming and limited in their ability to detect novel alleles. In this study we used denaturing gradient gel electrophoresis (DGGE), and direct sequencing, for BoLA-DRB3-typing. First, modified locus-specific primers were used in polymerase chain reaction (PCR) to amplify a 240 bp fragment of exon 2 of BoLA-DRB3 from the genomic DNA of 22 cattle and one pair of twin calves. The reverse primer included a GC-rich clamp to improve the physical separation of the BoLA-DRB3 alleles by DGGE. The denaturing gradient needed to produce separation of alleles was determined using perpendicular DGGE, and this gradient was then applied to parallel denaturing gels. The optimal time for producing allele separation was determined using a time-series analysis. The bands representing individual BoLA-DRB3 alleles were excised from the gels, reamplified, and the nucleotide sequence determined using fluorescent-based automated cycle sequencing. The nucleotide sequences of the separated bands were then compared to published BoLA-DRB3 alleles. A gradient of 10-15% acrylamide combined with a 15-50% ureaformamide gradient was successfully used to separate BoLA-DRB3 alleles in all individuals examined. Nucleotide sequencing showed that the 24 animals possessed 13 BoLA-DRB3 alleles, all of which have been previously described. The BoLA-DRB3 genotypes included 20 heterozygotes and two homozygotes. Three BoLA-DRB3 alleles were seen in each of the twin calves, possibly due to leukochimerism. The technique is reliable and rapid, and avoids cloning alleles prior to nucleotide sequencing and therefore offers distinct advantages over previous techniques for BoLA-DRB3-typing.

UI MeSH Term Description Entries
D009691 Nucleic Acid Denaturation Disruption of the secondary structure of nucleic acids by heat, extreme pH or chemical treatment. Double strand DNA is "melted" by dissociation of the non-covalent hydrogen bonds and hydrophobic interactions. Denatured DNA appears to be a single-stranded flexible structure. The effects of denaturation on RNA are similar though less pronounced and largely reversible. DNA Denaturation,DNA Melting,RNA Denaturation,Acid Denaturation, Nucleic,Denaturation, DNA,Denaturation, Nucleic Acid,Denaturation, RNA,Nucleic Acid Denaturations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005802 Genes, MHC Class II Genetic loci in the vertebrate major histocompatibility complex that encode polymorphic products which control the immune response to specific antigens. The genes are found in the HLA-D region in humans and include H-2M, I-A, and I-E loci in mice. Class II Genes,Genes, Class II,Genes, HLA Class II,MHC Class II Genes,Class II Gene,Gene, Class II
D006650 Histocompatibility Testing Identification of the major histocompatibility antigens of transplant DONORS and potential recipients, usually by serological tests. Donor and recipient pairs should be of identical ABO blood group, and in addition should be matched as closely as possible for HISTOCOMPATIBILITY ANTIGENS in order to minimize the likelihood of allograft rejection. (King, Dictionary of Genetics, 4th ed) Crossmatching, Tissue,HLA Typing,Tissue Typing,Crossmatchings, Tissue,HLA Typings,Histocompatibility Testings,Testing, Histocompatibility,Testings, Histocompatibility,Tissue Crossmatching,Tissue Crossmatchings,Tissue Typings,Typing, HLA,Typing, Tissue,Typings, HLA,Typings, Tissue
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
January 2002, Methods in molecular biology (Clifton, N.J.),
B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
February 2004, European journal of immunogenetics : official journal of the British Society for Histocompatibility and Immunogenetics,
B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
January 2013, Methods in molecular biology (Clifton, N.J.),
B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
February 2007, Journal of visualized experiments : JoVE,
B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
March 1998, Bulletin du cancer,
B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
May 1993, Nucleic acids research,
B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
September 2008, Poultry science,
B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
October 2008, Animal genetics,
B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
August 2008, International journal of immunogenetics,
B M Aldridge, and S M McGuirk, and R J Clark, and L A Knapp, and D I Watkins, and D P Lunn
June 1999, Animal genetics,
Copied contents to your clipboard!