Autocrine inhibition of milk secretion in the lactating tammar wallaby (Macropus eugenii). 1998

K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
Hannah Research Institute, Ayr, UK.

The lactating tammar wallaby progressively alters the rate of secretion and composition of its milk to provide appropriate nutrition for the developing offspring, whose needs are signalled by changes in the pattern and efficiency of its sucking. Tammars are also capable of asynchronous concurrent lactation, when the mother provides a dilute milk for a newborn young permanently attached to the teat (phase 2A of lactation), and a concentrated milk from an adjacent mammary gland for a young-at-heel (phase 3). The relationship between suckling behaviour and milk secretion, and the ability of adjacent glands to function independently, suggests that milk secretion is controlled locally, within each mammary gland, by a mechanism sensitive to frequency and completeness of milk removal. To determine if tammar milk contains a factor able to control milk secretion, milk fractions have been screened in tissue and cell culture bioassays. A 6-30 kDa fraction of phase 3 whey was found to inhibit milk constituent synthesis and secretion in vitro, and inhibitory activity was associated with two discrete fractions obtained by anion exchange chromatography, which contained protein bands migrating anomalously at 66 kDa and 63 kDa in SDS-PAGE. These bands were recognised in Western blotting by antiserum raised against a bovine autocrine inhibitor of milk secretion. By the same criteria, milk secreted in phase 2B of tammar lactation, when milk secretion is low and suckling intermittent but less vigorous than phase 3, also contained a feedback inhibitor of milk secretion. The results indicate that, as in dairy animals, marsupial milk secretion is under local control through feedback inhibition by a milk protein, and raise the possibility that autocrine feedback may influence the transition from phases of low milk secretion (phase 2A, 2B) to a high rate in the final third phase of lactation.

UI MeSH Term Description Entries
D007614 Macropodidae A family of herbivorous leaping MAMMALS of Australia, New Guinea, and adjacent islands. Members include kangaroos, wallabies, quokkas, and wallaroos. Kangaroos,Macropus,Petrogale,Quokkas,Setonix,Wallabies,Wallabies, Rock,Wallaroo,Macropus robustus,Kangaroo,Petrogales,Quokka,Rock Wallabies,Rock Wallaby,Wallaby,Wallaby, Rock,Wallaroos
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D008894 Milk Proteins The major protein constituents of milk are CASEINS and whey proteins such as LACTALBUMIN and LACTOGLOBULINS. IMMUNOGLOBULINS occur in high concentrations in COLOSTRUM and in relatively lower concentrations in milk. (Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed, p554) Milk Protein,Protein, Milk,Proteins, Milk
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005260 Female Females
D000067816 Whey Proteins The protein components of milk obtained from the whey. Whey Protein,Protein, Whey,Proteins, Whey

Related Publications

K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
January 2007, Biochimica et biophysica acta,
K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
July 1980, The Journal of endocrinology,
K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
February 1997, Australian veterinary journal,
K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
March 1980, Australian journal of biological sciences,
K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
June 2007, Comparative biochemistry and physiology. Part D, Genomics & proteomics,
K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
March 1997, Hearing research,
K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
January 1982, Australian journal of biological sciences,
K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
March 2021, Reproduction (Cambridge, England),
K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
May 1994, Biochimica et biophysica acta,
K A Hendry, and K J Simpson, and K R Nicholas, and C J Wilde
December 2009, Cold Spring Harbor protocols,
Copied contents to your clipboard!