pBLA8, from Brevibacterium linens, belongs to a gram-positive subfamily of ColE2-related plasmids. 1998

Veronique Leret, and Annie Trautwetter, and Alain Rind, and Carlos Blanco

A 3.1 kb DNA fragment from pBLA8, a Brevibacterium linens cryptic plasmid, containing all the information required for autonomous replication was cloned and sequenced. Using deletion analysis, the fragment essential and sufficient for autonomous replication was delimited to 1.5 kb. This fragment is characterized by the presence of an ori site located upstream of an operon encoding two proteins, RepA and RepB, both essential for replication. Based on structural similarities and a strong conservation of ori, RepA and RepB, pBLA8 was assigned to a new subfamily of the ColE2 plasmid family. This subfamily is distinguished by the requirement for two Rep proteins and the location of an ori site upstream of the repAB operon. RepA is thought to encode primase activity, whereas RepB could be a DNA-binding protein. An Escherichia coli-B. linens shuttle vector, derived from pBLA8, was constructed. Its host spectrum was extended to Arthrobacter species.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D012093 Replicon Any DNA sequence capable of independent replication or a molecule that possesses a REPLICATION ORIGIN and which is therefore potentially capable of being replicated in a suitable cell. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Replication Unit,Replication Units,Replicons,Unit, Replication,Units, Replication
D001951 Brevibacterium A gram-positive organism found in dairy products, fresh and salt water, marine organisms, insects, and decaying organic matter.
D003086 Bacteriocin Plasmids Plasmids encoding bacterial exotoxins (BACTERIOCINS). Bacteriocin Factors,Col Factors,Colicin Factors,Colicin Plasmids,Bacteriocin Factor,Bacteriocin Plasmid,Col Factor,Colicin Factor,Colicin Plasmid,Factor, Bacteriocin,Factor, Col,Factor, Colicin,Factors, Bacteriocin,Factors, Col,Factors, Colicin,Plasmid, Bacteriocin,Plasmid, Colicin,Plasmids, Bacteriocin,Plasmids, Colicin
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

Veronique Leret, and Annie Trautwetter, and Alain Rind, and Carlos Blanco
April 1978, Zeitschrift fur Lebensmittel-Untersuchung und -Forschung,
Veronique Leret, and Annie Trautwetter, and Alain Rind, and Carlos Blanco
March 2003, Plasmid,
Veronique Leret, and Annie Trautwetter, and Alain Rind, and Carlos Blanco
February 1999, Microbiology (Reading, England),
Veronique Leret, and Annie Trautwetter, and Alain Rind, and Carlos Blanco
November 1988, Molecular & general genetics : MGG,
Veronique Leret, and Annie Trautwetter, and Alain Rind, and Carlos Blanco
March 1999, Molecular microbiology,
Veronique Leret, and Annie Trautwetter, and Alain Rind, and Carlos Blanco
September 2005, Current microbiology,
Veronique Leret, and Annie Trautwetter, and Alain Rind, and Carlos Blanco
April 1985, Journal of general microbiology,
Veronique Leret, and Annie Trautwetter, and Alain Rind, and Carlos Blanco
December 1994, Journal of bacteriology,
Veronique Leret, and Annie Trautwetter, and Alain Rind, and Carlos Blanco
June 2000, International journal of food microbiology,
Copied contents to your clipboard!