Internuclear neurons of the ocular motor system of the larval sea lamprey. 1998

M J González, and M A Pombal, and M C Rodicio, and R Anadón
Department of Cellular and Molecular Biology, University of A Coruña, Spain.

The internuclear neurons of the ocular motor system of lampreys are characterized here for the first time. Horseradish peroxidase (HRP), fluorescein-, or Texas red-(TRDA) coupled dextran-amine applied into the oculomotor nucleus of larval lamprey (Petromyzon marinus) retrogradely labeled two populations of contralateral abducens interneurons, one lateral and the other periventricular. Tracer application to the abducens nucleus anterogradely labeled thick contralateral fibers that specifically contact the medial rectus motor subnucleus by means of large boutons. Local application of TRDA to this subnucleus allowed identification of the lateral abducens interneurons as the origin of this projection. Electron microscopy of the medial rectus motor subnucleus showed large boutons bearing round synaptic vesicles that contact on the perikarya, as well as small boutons with pleomorphic vesicles. This lateral rectus (abducens) -- medial rectus (oculomotor) internuclear projection of lampreys appears to be similar to those involved in the coordination of horizontal eye movements in mammals. The periventricular abducens interneurons projected bilaterally to other oculomotor subnuclei. Tracer application to the abducens nucleus labeled a group of small interneurons in the ipsilateral dorsal rectus motor subnucleus. Anterograde labeling indicates that oculomotor interneurons project ipsilaterally to the ventral rectus abducens subnucleus, thus, corresponding to oculomotor interneurons found in mammals and frogs. The interneurons of the dorsal rectus and ventral rectus motor subnuclei are probably involved in the control of conjugate vertical eye movements. The present results strongly suggest that the internuclear coordination of conjugate eye movements appeared in the earliest vertebrates. The homologies of extraocular muscles of lampreys and gnathostomes were reexamined.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D007798 Lampreys Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009802 Oculomotor Nerve The 3d cranial nerve. The oculomotor nerve sends motor fibers to the levator muscles of the eyelid and to the superior rectus, inferior rectus, and inferior oblique muscles of the eye. It also sends parasympathetic efferents (via the ciliary ganglion) to the muscles controlling pupillary constriction and accommodation. The motor fibers originate in the oculomotor nuclei of the midbrain. Cranial Nerve III,Third Cranial Nerve,Nerve III,Nervus Oculomotorius,Cranial Nerve IIIs,Cranial Nerve, Third,Cranial Nerves, Third,Nerve IIIs,Nerve, Oculomotor,Nerve, Third Cranial,Nerves, Oculomotor,Nerves, Third Cranial,Oculomotor Nerves,Oculomotorius, Nervus,Third Cranial Nerves
D000010 Abducens Nerve The 6th cranial nerve which originates in the ABDUCENS NUCLEUS of the PONS and sends motor fibers to the lateral rectus muscles of the EYE. Damage to the nerve or its nucleus disrupts horizontal eye movement control. Cranial Nerve VI,Sixth Cranial Nerve,Abducent Nerve,Nerve VI,Nervus Abducens,Abducen, Nervus,Abducens, Nervus,Abducent Nerves,Cranial Nerve VIs,Cranial Nerve, Sixth,Nerve VI, Cranial,Nerve VIs,Nerve VIs, Cranial,Nerve, Abducens,Nerve, Abducent,Nerve, Sixth Cranial,Nerves, Sixth Cranial,Nervus Abducen,Sixth Cranial Nerves
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014722 Vestibule, Labyrinth An oval, bony chamber of the inner ear, part of the bony labyrinth. It is continuous with bony COCHLEA anteriorly, and SEMICIRCULAR CANALS posteriorly. The vestibule contains two communicating sacs (utricle and saccule) of the balancing apparatus. The oval window on its lateral wall is occupied by the base of the STAPES of the MIDDLE EAR. Vestibular Apparatus,Ear Vestibule,Vestibular Labyrinth,Vestibule of Ear,Vestibulum Auris,Apparatus, Vestibular,Ear Vestibules,Labyrinth Vestibule,Labyrinth Vestibules,Labyrinth, Vestibular,Labyrinths, Vestibular,Vestibular Labyrinths,Vestibule, Ear,Vestibules, Ear,Vestibules, Labyrinth

Related Publications

M J González, and M A Pombal, and M C Rodicio, and R Anadón
October 1991, The Journal of comparative neurology,
M J González, and M A Pombal, and M C Rodicio, and R Anadón
March 1994, The Journal of comparative neurology,
M J González, and M A Pombal, and M C Rodicio, and R Anadón
October 1993, The Journal of comparative neurology,
M J González, and M A Pombal, and M C Rodicio, and R Anadón
March 2002, Journal of chemical neuroanatomy,
M J González, and M A Pombal, and M C Rodicio, and R Anadón
July 1987, Brain research,
M J González, and M A Pombal, and M C Rodicio, and R Anadón
October 2011, Neuroscience,
M J González, and M A Pombal, and M C Rodicio, and R Anadón
January 2011, Handbook of clinical neurology,
M J González, and M A Pombal, and M C Rodicio, and R Anadón
September 2005, Brain research bulletin,
M J González, and M A Pombal, and M C Rodicio, and R Anadón
May 1982, Fortschritte der Neurologie-Psychiatrie,
M J González, and M A Pombal, and M C Rodicio, and R Anadón
January 1998, Brain research,
Copied contents to your clipboard!