Proton-driven dipeptide uptake in primary cultured rabbit conjunctival epithelial cells. 1998

S K Basu, and I S Haworth, and M B Bolger, and V H Lee
Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles 90033, USA.

OBJECTIVE To characterize proton-driven carrier-mediated dipeptide uptake in primary cultured conjunctival epithelial cells of the pigmented rabbit using beta-alanyl-L-histidine (L-carnosine) as a model dipeptide substrate. METHODS Uptake of tritiated L-carnosine was monitored using conjunctival epithelial cells on days 6 through 8 in culture on a filter support. The structural features of dileucine stereoisomers and cephalexin contributing to interaction with the dipeptide transporter were evaluated by computer modeling and inhibition of tritiated L-carnosine uptake. RESULTS Uptake of L-carnosine by primary cultured conjunctival epithelial cells in the presence of an inwardly directed proton gradient showed directional asymmetry (favoring apical uptake by a factor of five), temperature dependence, and saturability correlated with substrate concentration, with a Michaelis-Menten constant (Km) of 0.3 +/- 0.03 mM and a maximum uptake rate (Vmax) of 22.0 +/- 1.0 picomoles per milligram protein per minute. L-Carnosine uptake was optimal at pH 6.0 and was reduced by 60% and 35%, respectively, by 50 microM p-trifluoromethoxyphenylhydrazone (a proton ionophore) and by acid preloading with 50 mM NH4Cl. The constituent amino acids did not inhibit L-carnosine uptake. L-Carnosine uptake was inhibited, however, from 50% to 80% by other dipeptides and structurally similar drugs such as bestatin, beta-lactam antibiotics, and angiotensin-converting enzyme inhibitors. The LL, LD, or DL forms of the dipeptide Leu-Leu inhibited tritiated L-carnosine uptake by approximately 60%, 40%, and 70%, respectively. By contrast, the DD form did not inhibit uptake. Results from computer modeling suggest that an appropriate dipeptide N-terminal to C-terminal distance and a favorable orientation of the side chains may be important for substrate interaction with the conjunctival dipeptide transporter. CONCLUSIONS Uptake of the dipeptide L-carnosine in primary cultured pigmented rabbit conjunctival epithelial cells is probably mediated by a proton-driven dipeptide transporter. This transporter may be used for optimizing the uptake of structurally similar peptidomimetic drugs.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008297 Male Males
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D002336 Carnosine A naturally occurring dipeptide neuropeptide found in muscles. Carnosine Hydrochloride,Carnosine, (D-His)-Isomer,L-Carnosine,beta-Alanylhistidine,Hydrochloride, Carnosine,L Carnosine,beta Alanylhistidine
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002506 Cephalexin A semisynthetic cephalosporin antibiotic with antimicrobial activity similar to that of CEPHALORIDINE or CEPHALOTHIN, but somewhat less potent. It is effective against both gram-positive and gram-negative organisms. 5-Thia-1-azabicyclo(4.2.0)oct-2-ene-2-carboxylic acid, 7-((aminophenylacetyl)amino)-3-methyl-8-oxo-, (6R-(6alpha,7beta(R*)))-,Cefalexin,Cephalexin Dihydride,Cephalexin Hemihydrate,Cephalexin Hydrochloride,Cephalexin Monohydrate,Cephalexin Monohydrochloride,Cephalexin Monohydrochloride, Monohydrate,Cephalexin, (6R-(6alpha,7alpha(R*)))-Isomer,Cephalexin, (6R-(6alpha,7beta(S*)))-Isomer,Cephalexin, (6R-(6alpha,7beta))-Isomer,Cephalexin, Monosodium Salt,Cephalexin, Monosodium Salt, (6R-(6alpha,7beta))-Isomer,Ceporexine,Palitrex

Related Publications

S K Basu, and I S Haworth, and M B Bolger, and V H Lee
August 1999, Nippon Ganka Gakkai zasshi,
S K Basu, and I S Haworth, and M B Bolger, and V H Lee
December 1996, Current eye research,
S K Basu, and I S Haworth, and M B Bolger, and V H Lee
April 2002, Investigative ophthalmology & visual science,
S K Basu, and I S Haworth, and M B Bolger, and V H Lee
July 1998, Pharmaceutical research,
S K Basu, and I S Haworth, and M B Bolger, and V H Lee
January 2005, Journal of drug targeting,
S K Basu, and I S Haworth, and M B Bolger, and V H Lee
July 2007, Molecular vision,
S K Basu, and I S Haworth, and M B Bolger, and V H Lee
June 1998, Investigative ophthalmology & visual science,
S K Basu, and I S Haworth, and M B Bolger, and V H Lee
October 1988, Investigative ophthalmology & visual science,
S K Basu, and I S Haworth, and M B Bolger, and V H Lee
December 1996, Current eye research,
Copied contents to your clipboard!