A role for cAMP in long-term depression at hippocampal mossy fiber synapses. 1998

T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
Department of Psychiatry, University of California, San Francisco 94143, USA.

Mossy fiber synapses on hippocampal CA3 pyramidal cells, in addition to expressing an NMDA receptor-independent form of long-term potentiation (LTP), have recently been shown to express a novel presynaptic form of long-term depression (LTD). We have studied the mechanisms underlying mossy fiber LTD and present evidence that it is triggered, at least in part, by a metabotropic glutamate receptor-mediated decrease in adenylyl cyclase activity, which leads to a decrease in the activity of the cAMP-dependent protein kinase (PKA) and a reversal of the presynaptic processes responsible for mossy fiber LTP. The bidirectional control of synaptic strength at mossy fiber synapses by activity therefore appears to be due to modulation of the cAMP-PKA signaling pathway in mossy fiber boutons.

UI MeSH Term Description Entries
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000600 Amino Acids, Dicarboxylic Dicarboxylic Amino Acids,Acids, Dicarboxylic Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017774 Long-Term Potentiation A persistent increase in synaptic efficacy, usually induced by appropriate activation of the same synapses. The phenomenological properties of long-term potentiation suggest that it may be a cellular mechanism of learning and memory. Long Term Potentiation,Long-Term Potentiations,Potentiation, Long-Term,Potentiations, Long-Term
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D017868 Cyclic AMP-Dependent Protein Kinases A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition. Adenosine Cyclic Monophosphate-Dependent Protein Kinases,Protein Kinase A,cAMP Protein Kinase,cAMP-Dependent Protein Kinases,Cyclic AMP-Dependent Protein Kinase,cAMP-Dependent Protein Kinase,Adenosine Cyclic Monophosphate Dependent Protein Kinases,Cyclic AMP Dependent Protein Kinase,Cyclic AMP Dependent Protein Kinases,Protein Kinase, cAMP,Protein Kinase, cAMP-Dependent,Protein Kinases, cAMP-Dependent,cAMP Dependent Protein Kinase,cAMP Dependent Protein Kinases
D018094 Receptors, Metabotropic Glutamate Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action. Glutamate Receptors, Metabotropic,Metabotropic Glutamate Receptors,Receptors, Glutamate, Metabotropic,Metabotropic Glutamate Receptor,Glutamate Receptor, Metabotropic,Receptor, Metabotropic Glutamate
D018690 Excitatory Amino Acid Agonists Drugs that bind to and activate excitatory amino acid receptors. Amino Acids, Excitatory, Agonists,Glutamate Agonists,Agonists, Excitatory Amino Acid,Amino Acid Agonist, Excitatory,Amino Acid Agonists, Excitatory,EAA Agonist,EAA Agonists,Excitatory Amino Acid Agonist,Glutamate Agonist,Agonist, EAA,Agonist, Glutamate,Agonists, EAA,Agonists, Glutamate

Related Publications

T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
March 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
October 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
June 1991, Neuroreport,
T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
January 1994, Advances in second messenger and phosphoprotein research,
T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
December 2008, Neuron,
T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
May 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
August 1996, Science (New York, N.Y.),
T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
September 1990, Journal of neurophysiology,
T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
January 2008, Neuron,
T Tzounopoulos, and R Janz, and T C Südhof, and R A Nicoll, and R C Malenka
January 2023, Frontiers in cellular neuroscience,
Copied contents to your clipboard!