Acute and chronic effects of capsaicin in perfused rat muscle: the role of tachykinins and calcitonin gene-related peptide. 1998

C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
Division of Biochemistry, University of Tasmania, Hobart, Australia.

In perfused rat skeletal muscle (hindlimb), capsaicin either stimulates (submicromolar concentrations) or inhibits (micromolar concentrations) oxygen consumption (VO2). Both VO2 effects are associated with vasoconstriction, evident as an increase in perfusion pressure (PP), under constant flow. We have proposed that these effects are mediated by two vanilloid receptor subtypes: VN1 (stimulation of VO2) and VN2 (inhibition of VO2) (; ). In the present study, the role of capsaicin-sensitive neurons and sensory neuropeptides in the VN1/VN2 receptor actions of capsaicin was investigated. The observed maximum stimulation of VO2 by capsaicin (0.4 microM; DeltaVO2, 1.35 +/- 0.14 micromol g-1 h-1) was accompanied by mild vasoconstriction (DeltaPP, 5.8 +/- 0.6 mm Hg). In contrast, 2 microM capsaicin produced strong inhibition of VO2 (DeltaVO2, -2.25 +/- 0.23 micromol g-1 h-1) with pronounced vasoconstriction (DeltaPP, 28.0 +/- 1.3 mm Hg). VO2 stimulation was significantly inhibited (P <.05) by the selective NK1 receptor antagonist CP-99994 (1 microM) and the NK2 receptor antagonist SR 48968 (1 microM) (by 42% and 51%, respectively), but PP was not altered. Infused SP and neurokinin A (NKA) stimulated VO2 (observed maximum DeltaVO2, 0.52 +/- 0.06 and 0.53 +/- 0.08 micromol g-1 h-1, respectively; EC50 values, 269 +/- 23 and 21.2 +/- 3.0 nM, respectively) and induced mild vasoconstriction (4.30 +/- 0.33 and 6. 75 +/- 1.18 mm Hg, respectively; EC50 values, 352 +/- 25.7 and 25.5 +/- 2.7 nM, respectively). Neurokinin B (NKB) also stimulated VO2 (maximum not determined) and vasoconstriction (maximum DeltaPP, 3.40 +/- 0.25 mm Hg; EC50, 34.4 +/- 5.2 nM). The rank order of potency for the tachykinins in this preparation was NKA > NKB > SP, which suggests stimulation primarily of NK2 receptors. Although infused calcitonin gene-related peptide (CGRP) did not alter hindlimb VO2 or PP, the selective CGRP antagonist CGRP(8-37) markedly potentiated the inhibition of VO2 produced by 1 microM capsaicin (84%) and the maximum capsaicin-induced vasoconstriction (57%), which indicates that endogenously released CGRP may act as a vasodilator. Hindlimbs perfused 1 day after capsaicin pretreatment showed attenuation of capsaicin-induced (0.4 microM) stimulation of VO2 (92%) (P <.05) and vasoconstriction (64%), but this returned to normal after 7 days. The inhibition of VO2 by 1 microM capsaicin was significantly (P <. 05) enhanced 7 and 14 days after pretreatment (66% and 140%, respectively), as was the maximum vasoconstriction (64% and 68%, respectively). These data suggest that capsaicin-sensitive neurons, presumably via release of SP and NKA, are involved in VN1 responses and that capsaicin pretreatment potentiates VN2 responses, either by depletion of CGRP reserves or by upregulation of putative VN2 receptors.

UI MeSH Term Description Entries
D008297 Male Males
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010880 Piperidines A family of hexahydropyridines.
D002211 Capsaicin An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. 8-Methyl-N-Vanillyl-6-Nonenamide,Antiphlogistine Rub A-535 Capsaicin,Axsain,Capsaicine,Capsicum Farmaya,Capsidol,Capsin,Capzasin,Gelcen,Katrum,NGX-4010,Zacin,Zostrix,8 Methyl N Vanillyl 6 Nonenamide,NGX 4010,NGX4010
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001549 Benzamides BENZOIC ACID amides.
D013373 Substance P An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses. Euler-Gaddum Substance P,Hypothalamic Substance P,SP(1-11),Euler Gaddum Substance P,Substance P, Euler-Gaddum,Substance P, Hypothalamic
D015288 Neurokinin A A mammalian neuropeptide of 10 amino acids that belongs to the tachykinin family. It is similar in structure and action to SUBSTANCE P and NEUROKININ B with the ability to excite neurons, dilate blood vessels, and contract smooth muscles, such as those in the BRONCHI. Substance K,Neurokinin alpha,Neuromedin L
D015740 Calcitonin Gene-Related Peptide A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator. Calcitonin Gene-Related Peptide I,Calcitonin Gene-Related Peptide II,alpha-CGRP,alpha-Calcitonin Gene-Related Peptide,beta-CGRP,beta-Calcitonin Gene-Related Peptide,Calcitonin Gene Related Peptide,Calcitonin Gene Related Peptide I,Calcitonin Gene Related Peptide II,Gene-Related Peptide, Calcitonin,alpha Calcitonin Gene Related Peptide,beta Calcitonin Gene Related Peptide
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
April 1990, Naunyn-Schmiedeberg's archives of pharmacology,
C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
October 1986, Acta physiologica Scandinavica,
C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
January 1990, Neuroscience letters,
C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
January 1992, Peptides,
C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
January 1986, Acta physiologica Scandinavica. Supplementum,
C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
May 1995, The Biochemical journal,
C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
June 1988, Naunyn-Schmiedeberg's archives of pharmacology,
C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
May 1993, Gastroenterology,
C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
June 1990, Journal of neuroscience research,
C D Griffiths, and D P Geraghty, and T P Eldershaw, and E Q Colquhoun
February 1993, Gastroenterology,
Copied contents to your clipboard!