Multiple sclerosis: expression of molecules of the tumor necrosis factor ligand and receptor families in relationship to the demyelinated plaque. 1998

C S Raine, and B Bonetti, and B Cannella
Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.

The molecules that comprise the tumor necrosis factor ligand and receptor (TNF-L and TNF-R) families play important roles in tissue homeostasis and in multiple sclerosis (MS). For example, levels of the TNF ligand (TNF alpha; cachectin) correlate with disease progression and lymphotoxin (LT, TNF beta) has been localized in MS lesions. Members of the TNF-R family are typical signal sensors which upon binding with ligand aggregate and recruit signal transducers. To date, no TNF-R molecules have been reported in MS although TNF-RI and RII have been localized to oligodendrocytes in culture. In the present study, the expression of TNF, LT alpha (the soluble form of LT), LT beta (the beta chain of LT alpha beta, the membrane-bound form of LT), TNF-RI, TNF-RII, LT beta-R, FasL, and Fas receptor in MS lesions has been examined by immunohistochemistry for protein and by RT-PCR for mRNA. In addition, the TUNEL technique for DNA fragmentation was applied to detect apoptosis. The results have shown that contrarily to predictions, oligodendrocytes around active MS lesions frequently expressed TNF-R molecules belonging to the apoptotic cascade. However, these cells did not undergo apoptosis, as judged by TUNEL. On the other hand, lymphocytes (and a few microglial cells) in the same tissue displayed apoptosis. Microglial cells were the major effector cells in the CNS and expressed TNF, LT alpha and FasL. LT beta expression was seen on astrocytes and oligodendrocytes, and LT beta-R on astrocytes. We conclude that TNF-L and TNF-R molecules are extensively expressed in MS, that their expression occurs at high levels but is not specific for MS, and that oligodendrocytes are depleted by a cytolytic mechanism, not by apoptosis.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008233 Lymphotoxin-alpha A tumor necrosis factor family member that is released by activated LYMPHOCYTES. Soluble lymphotoxin is specific for TUMOR NECROSIS FACTOR RECEPTOR TYPE I; TUMOR NECROSIS FACTOR RECEPTOR TYPE II; and TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 14. Lymphotoxin-alpha can form a membrane-bound heterodimer with LYMPHOTOXIN-BETA that has specificity for the LYMPHOTOXIN BETA RECEPTOR. TNF Superfamily, Member 1,TNF-beta,Tumor Necrosis Factor Ligand Superfamily Member 1,Tumor Necrosis Factor-beta,Lymphotoxin,Lymphotoxin-alpha3,Soluble Lymphotoxin-alpha,alpha-Lymphotoxin,Lymphotoxin alpha,Lymphotoxin alpha3,Lymphotoxin-alpha, Soluble,Soluble Lymphotoxin alpha,Tumor Necrosis Factor beta,alpha Lymphotoxin
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009103 Multiple Sclerosis An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903) MS (Multiple Sclerosis),Multiple Sclerosis, Acute Fulminating,Sclerosis, Disseminated,Disseminated Sclerosis,Sclerosis, Multiple
D003711 Demyelinating Diseases Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system. Clinically Isolated CNS Demyelinating Syndrome,Clinically Isolated Syndrome, CNS Demyelinating,Demyelinating Disorders,Demyelination,Demyelinating Disease,Demyelinating Disorder,Demyelinations
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

C S Raine, and B Bonetti, and B Cannella
June 1996, The New England journal of medicine,
C S Raine, and B Bonetti, and B Cannella
July 1992, Deutsche medizinische Wochenschrift (1946),
C S Raine, and B Bonetti, and B Cannella
March 2009, The Lancet. Neurology,
C S Raine, and B Bonetti, and B Cannella
April 2004, Current opinion in structural biology,
C S Raine, and B Bonetti, and B Cannella
January 2006, Current directions in autoimmunity,
C S Raine, and B Bonetti, and B Cannella
August 2003, The Journal of biological chemistry,
C S Raine, and B Bonetti, and B Cannella
August 1989, The Journal of experimental medicine,
C S Raine, and B Bonetti, and B Cannella
August 1993, The Journal of biological chemistry,
C S Raine, and B Bonetti, and B Cannella
April 1997, Neurology,
Copied contents to your clipboard!