Ionophore properties of cationomycin in large unilamellar vesicles studied by 23Na- and 39K-NMR. 1998

A M Delort, and G Jeminet, and S Sareth, and F G Riddle
Laboratoire de Synthèse, Université Blaise Pascal-CNRS, Aubiere, France.

Cationomycin, isolated from Actinomadura azurea belongs to a large family of carboxylic polyether antibiotics, transporting monovalent cations through membranes by a mobile carrier mechanism, leading globally to an H+, M+ exchange. In this report the cation transporting properties of cationomycin were characterized in large unilamellar vesicles (LUVs) by 23Na- and 39K-NMR. Kinetic studies showed that cationomycin transported potassium more rapidly than sodium, and the more stable complex was formed with potassium at the water/membrane interface. The transport rate constants measured for cationomycin were compared with those obtained for monensin. Cationomycin transports Na+ more slowly than monensin and has a lower stability complex with Na+ because of the lower formation rate for the complex on the membrane surface. Our results show that transport selectivity of cationomycin is in favour of K+ versus Na+ while the reverse situation is observed for monensin. The relationships between the ionophore properties of cationomycin and monensin with their biological activities are discussed.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011197 Potassium Radioisotopes Unstable isotopes of potassium that decay or disintegrate emitting radiation. K atoms with atomic weights 37, 38, 40, and 42-45 are radioactive potassium isotopes. Radioisotopes, Potassium
D005663 Furans Compounds with a 5-membered ring of four carbons and an oxygen. They are aromatic heterocycles. The reduced form is tetrahydrofuran. Tetrahydrofurans
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D012979 Sodium Radioisotopes Unstable isotopes of sodium that decay or disintegrate emitting radiation. Na atoms with atomic weights 20-22 and 24-26 are radioactive sodium isotopes. Radioisotopes, Sodium
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

A M Delort, and G Jeminet, and S Sareth, and F G Riddle
October 1988, Biochimica et biophysica acta,
A M Delort, and G Jeminet, and S Sareth, and F G Riddle
February 1985, Proceedings of the National Academy of Sciences of the United States of America,
A M Delort, and G Jeminet, and S Sareth, and F G Riddle
February 1993, Biophysical journal,
A M Delort, and G Jeminet, and S Sareth, and F G Riddle
September 1983, Proceedings of the National Academy of Sciences of the United States of America,
A M Delort, and G Jeminet, and S Sareth, and F G Riddle
November 1986, Biochimica et biophysica acta,
A M Delort, and G Jeminet, and S Sareth, and F G Riddle
April 1979, FEBS letters,
A M Delort, and G Jeminet, and S Sareth, and F G Riddle
November 1998, Biochimica et biophysica acta,
A M Delort, and G Jeminet, and S Sareth, and F G Riddle
January 1994, Molecular membrane biology,
A M Delort, and G Jeminet, and S Sareth, and F G Riddle
July 1984, Experientia,
Copied contents to your clipboard!