Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. 1998

J L Johnson, and C L Jackson, and G D Angelini, and S J George
Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol, UK. jason.1.johnson@bristol.ac.uk

Recent studies suggest that mast cell-derived neutral proteases can activate matrix-degrading metalloproteinases (MMPs). We have investigated the role of the mast cell proteases tryptase and chymase in the activation of MMPs in human carotid endarterectomy specimens (atherosclerotic, n=32) and postmortem carotid arteries (control, n=17). In vitro degranulation of mast cells in atherosclerotic carotid arteries by compound 48/80 caused a significant increase in MMP activity. Addition of the nonselective tryptase inhibitor antipain, the specific trypsinlike protease inhibitor 4-amidinophenylmethanesulfonyl fluoride, and the chymase inhibitor chymostatin reduced this increase in MMP activity by 30+/-6%, 23+/-6%, and 9+/-2%, respectively. Immunocytochemistry identified significantly higher numbers of tryptase-containing cells (mast cells) and cells expressing MMP-1 and MMP-3 in the "shoulder" regions of atherosclerotic artery lesions compared with the tunica media of control arteries. Dual immunocytochemistry showed collocation of MMP-1 and MMP-3 with mast cells in the shoulder regions. Degranulation was observed in 78+/-5% (mean+/-SEM) of mast cells in this area, whereas nonactivated mast cells were observed in all other areas. In situ zymography revealed caseinolytic and gelatinolytic activity in these areas. In conclusion, in vitro mast cell degranulation, which releases mast cell proteases, in carotid arteries increases MMP activity. Furthermore, elevated MMP-1 and MMP-3 expression is collocated with increased numbers of degranulated mast cells and with greater MMP activity in the shoulder regions of atherosclerotic plaques. Activation of MMPs by mast cell-derived proteases may be an important mechanism in atherosclerotic plaque destabilization.

UI MeSH Term Description Entries
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002343 Carotid Artery, Internal Branch of the common carotid artery which supplies the anterior part of the brain, the eye and its appendages, the forehead and nose. Arteries, Internal Carotid,Artery, Internal Carotid,Carotid Arteries, Internal,Internal Carotid Arteries,Internal Carotid Artery
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000369 Aged, 80 and over Persons 80 years of age and older. Oldest Old
D001161 Arteriosclerosis Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries. Arterioscleroses

Related Publications

J L Johnson, and C L Jackson, and G D Angelini, and S J George
December 1994, The Journal of clinical investigation,
J L Johnson, and C L Jackson, and G D Angelini, and S J George
March 2012, Thrombosis and haemostasis,
J L Johnson, and C L Jackson, and G D Angelini, and S J George
January 1994, Journal of neuro-oncology,
J L Johnson, and C L Jackson, and G D Angelini, and S J George
May 2010, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
J L Johnson, and C L Jackson, and G D Angelini, and S J George
May 1994, The Journal of biological chemistry,
J L Johnson, and C L Jackson, and G D Angelini, and S J George
November 2007, Trends in cardiovascular medicine,
J L Johnson, and C L Jackson, and G D Angelini, and S J George
January 2005, Neuroimmunomodulation,
J L Johnson, and C L Jackson, and G D Angelini, and S J George
June 1976, Biochimica et biophysica acta,
J L Johnson, and C L Jackson, and G D Angelini, and S J George
February 2001, Japanese circulation journal,
J L Johnson, and C L Jackson, and G D Angelini, and S J George
July 1992, BioEssays : news and reviews in molecular, cellular and developmental biology,
Copied contents to your clipboard!