The effect of MDMA (3,4-methylenedioxymethamphetamine) on the 5-HT synthesis rate in the rat brain: an autoradiographic study. 1998

D Mück-Seler, and S Takahashi, and M Diksic
Cone Laboratory for Neurosurgical Research, Department of Neurology and Neurosurgery, and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, Canada.

The effect of MDMA (3,4-methylenedioxymethamphetamine), a psychotropic amphetamine derivative, treatment on the rate of serotonin (5-hydroxytryptamine; 5-HT) synthesis in the rat brain was studied by autoradiography using alpha-[14C]-methyl-l-tryptophan method. Three different treatment protocols were compared to the control (saline) treated rats: (1) rats treated twice with 10 mg/kg every 12 h (20 mg/kg total) and injected tracer for the synthesis measurements 15 h later; (2) rats treated with four injections of 5 mg/kg every 12 h (20 mg/kg total) and injected tracer for the synthesis measurement 17 h after the last dose; and (3) rats given eight injections of 5 mg/kg every 12 h for four days (40 mg/kg) and used in the synthesis study 14 days after the last dose. Results showed a significant decrease in the rate of synthesis in the majority of cerebral structures examined in the 10 mg/kg group. In contrast the group receiving the same total amount (20 mg/kg) of MDMA but over two days (4x5 mg/kg) showed a significant increase in 5-HT synthesis in comparison to controls. The 5-HT synthesis rates measured 14 days after the last dose (four days, 8x5 mg/kg) were significantly reduced. The findings suggest that MDMA can produce either an increase or a decrease in the 5-HT synthesis a short time after a total dose of 20 mg/kg depending on the dose fractionation. However, 14 days after total dose of 40 mg/kg given over four days the synthesis rate was significantly reduced in many brain structures. The latter suggests a possible effect of the MDMA neurotoxicity on the serotonergic neurons, in addition to a possible influence on 5-HT synthesis via a feedback mechanism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

D Mück-Seler, and S Takahashi, and M Diksic
February 2009, Journal of neurochemistry,
D Mück-Seler, and S Takahashi, and M Diksic
April 2006, Neurochemistry international,
D Mück-Seler, and S Takahashi, and M Diksic
October 2006, Brain research bulletin,
D Mück-Seler, and S Takahashi, and M Diksic
January 1986, Psychopharmacology,
D Mück-Seler, and S Takahashi, and M Diksic
November 1989, Pharmacology, biochemistry, and behavior,
D Mück-Seler, and S Takahashi, and M Diksic
April 2007, The international journal of neuropsychopharmacology,
D Mück-Seler, and S Takahashi, and M Diksic
June 1987, European journal of pharmacology,
Copied contents to your clipboard!