Microprobe analysis of element distribution in rabbit and dog erythrocytes as examples of "high" and "low" potassium cells. 1996

H R Catchpole, and M B Engel
Department of Oral Biology, College of Dentistry, University of Illinois at Chicago 60612, USA.

The concentrations of Na, Mg, P, S, Cl, K and Fe were determined by microprobe in near 100% hematocrit suspensions of rabbit and dog erythrocytes prepared by freezing and drying. These cells are representative, respectively, of "high" potassium, "low" sodium, and "high" sodium, "low" potassium cells. Water contents of the cells were the same, as were, approximately, the levels of Cl, S and Fe. Rabbit P was nearly double that of the dog. For the rabbit, the cell Na/K ratio was 0.21 and for the dog 15.4, illustrating the major diffusible electrolyte difference between these two types of cell. The rabbit erythrocytes showed an apparent negative immobile charge density of 95 meq/kg of cell water and the dog 56 meq/kg cell water, a distinct difference. Serum electrolytes in the two species are exactly comparable (Standard Tables). Ionic distribution in these cell types was treated by the Gibbs-Duhem equation representing two heterogeneous systems in thermodynamic equilibrium with the blood serum. Factors to be considered are: (1) the composition of the erythrocyte and its net immobile charge; (2) the physicochemical properties of the individual ions (charge, ionic radius, hydration energy, standard chemical potential); (3) the dielectric constant of the dispersion medium (in this case, water); and (4) the binding constants of the ions. The hypothesis of "active transport" (the sodium-potassium pump) is specifically rejected as an explanation of ionic differences.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004577 Electron Probe Microanalysis Identification and measurement of ELEMENTS and their location based on the fact that X-RAYS emitted by an element excited by an electron beam have a wavelength characteristic of that element and an intensity related to its concentration. It is performed with an electron microscope fitted with an x-ray spectrometer, in scanning or transmission mode. Microscopy, Electron, X-Ray Microanalysis,Spectrometry, X-Ray Emission, Electron Microscopic,Spectrometry, X-Ray Emission, Electron Probe,X-Ray Emission Spectrometry, Electron Microscopic,X-Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis, Electron Microscopic,X-Ray Microanalysis, Electron Probe,Microanalysis, Electron Probe,Spectrometry, X Ray Emission, Electron Microscopic,Spectrometry, X Ray Emission, Electron Probe,X Ray Emission Spectrometry, Electron Microscopic,X Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis,Electron Probe Microanalyses,Microanalyses, Electron Probe,Microanalysis, X-Ray,Probe Microanalyses, Electron,Probe Microanalysis, Electron,X Ray Microanalysis,X Ray Microanalysis, Electron Microscopic,X Ray Microanalysis, Electron Probe
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

H R Catchpole, and M B Engel
July 1972, The Journal of physiology,
H R Catchpole, and M B Engel
January 1967, Comptes rendus des seances de la Societe de biologie et de ses filiales,
H R Catchpole, and M B Engel
January 1989, Experimental biology,
H R Catchpole, and M B Engel
March 1991, Scanning microscopy,
H R Catchpole, and M B Engel
January 2006, Experimental animals,
H R Catchpole, and M B Engel
February 2019, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada,
H R Catchpole, and M B Engel
February 1977, Calcified tissue research,
H R Catchpole, and M B Engel
October 1971, The Journal of general physiology,
Copied contents to your clipboard!