In vitro verification of myocardial motion tracking from phase-contrast velocity data. 1998

M Drangova, and Y Zhu, and B Bowman, and N J Pelc
Imaging Research Laboratories, The John P. Robarts Research Institute, London, Ontario, Canada.

The ability to track motion from cine phase-contrast (PC) magnetic resonance (MR) velocity measurements was investigated using an in vitro model. A computer-controlled deformable phantom was used for the characterization of the accuracy and precision of the forward-backward and the compensated Fourier integration techniques. Trajectory accuracy is limited by temporal resolution when the forward-backward technique is used. With this technique the extent of the calculated trajectories is underestimated by an amount related to the motion period and the sequence repetition time, because of the band-limiting caused in the cine interpolation step. When the compensated Fourier integration technique is used, trajectory accuracy is independent of temporal resolution and is better than 1 mm for excursions of less than 15 mm, which are comparable to those observed in the myocardium. Measurement precision is dominated by the artifact level in the phase-contrast images. If no artifacts are present precision is limited by the inherent signal-to-noise ratio of the images. In the presence of artifacts, similar in magnitude to those observed in vivo, the reproducibility of tracking a 2.2 x 2.2 mm2 region of interest is better than 0.5 mm. When the Fourier integration technique is used, the improved accuracy is accompanied by a reduction in precision. We verified that tracking three-dimensional (3D) motion from velocity measurements of a single slice can lead to underestimations of the trajectory if there is a through-plane component of the motion that is not truly represented by the measured velocities. This underestimation can be overcome if volumetric cine phase-contrast velocity data are acquired and full three-dimensional analysis is performed.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016477 Artifacts Any visible result of a procedure which is caused by the procedure itself and not by the entity being analyzed. Common examples include histological structures introduced by tissue processing, radiographic images of structures that are not naturally present in living tissue, and products of chemical reactions that occur during analysis. Artefacts,Artefact,Artifact
D019028 Magnetic Resonance Imaging, Cine A type of imaging technique used primarily in the field of cardiology. By coordinating the fast gradient-echo MRI sequence with retrospective ECG-gating, numerous short time frames evenly spaced in the cardiac cycle are produced. These images are laced together in a cinematic display so that wall motion of the ventricles, valve motion, and blood flow patterns in the heart and great vessels can be visualized. Cine MRI,Cine Magnetic Resonance Imaging,Cine MRIs,MRI, Cine,MRIs, Cine
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

M Drangova, and Y Zhu, and B Bowman, and N J Pelc
January 1999, Journal of magnetic resonance imaging : JMRI,
M Drangova, and Y Zhu, and B Bowman, and N J Pelc
January 2008, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention,
M Drangova, and Y Zhu, and B Bowman, and N J Pelc
January 1996, IEEE transactions on medical imaging,
M Drangova, and Y Zhu, and B Bowman, and N J Pelc
December 1994, Investigative radiology,
M Drangova, and Y Zhu, and B Bowman, and N J Pelc
November 2008, Journal of magnetic resonance imaging : JMRI,
M Drangova, and Y Zhu, and B Bowman, and N J Pelc
July 2008, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography,
M Drangova, and Y Zhu, and B Bowman, and N J Pelc
April 2006, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery,
M Drangova, and Y Zhu, and B Bowman, and N J Pelc
January 2006, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,
M Drangova, and Y Zhu, and B Bowman, and N J Pelc
April 1994, Magnetic resonance in medicine,
M Drangova, and Y Zhu, and B Bowman, and N J Pelc
December 2010, Chaos (Woodbury, N.Y.),
Copied contents to your clipboard!